广东省潮州市湘桥区2023届中考数学猜题卷含解析_第1页
广东省潮州市湘桥区2023届中考数学猜题卷含解析_第2页
广东省潮州市湘桥区2023届中考数学猜题卷含解析_第3页
广东省潮州市湘桥区2023届中考数学猜题卷含解析_第4页
广东省潮州市湘桥区2023届中考数学猜题卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80° B.左转80° C.右转100° D.左转100°2.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是()A.0 B.1 C.2 D.33.若2m﹣n=6,则代数式m-n+1的值为()A.1 B.2 C.3 D.44.某中学篮球队12名队员的年龄如下表:年龄:(岁)13141516人数1542关于这12名队员的年龄,下列说法错误的是()A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁5.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°6.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根7.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A. B. C. D.8.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A.B.C.D.9.八边形的内角和为()A.180° B.360° C.1080° D.1440°10.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是()A.3 B.﹣ C.﹣3 D.﹣611.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是()A. B. C. D.12.估计-1的值在()A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.14.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_____.15.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.16.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)17.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.18.已知函数是关于的二次函数,则__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.20.(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求与的函数关系式,并写出的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.21.(6分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.22.(8分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.23.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.24.(10分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.(1)由题意易知,,观察图,请猜想另外两组全等的三角形;;(2)求证:四边形是平行四边形;(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.25.(10分)在平面直角坐标系中,点,,将直线平移与双曲线在第一象限的图象交于、两点.(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;(2)若,①如图2,当时,求的值;②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为.26.(12分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,,且,求m的值.27.(12分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选A.2、C【解析】

由四边形ABCD是正方形,得到AD=BC,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.【详解】详解:∵四边形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴∴故③正确,故选C.【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.3、D【解析】

先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.【详解】mn+1=(2m﹣n)+1当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.【点睛】本题考查代数式,解题的关键是掌握整体代入法.4、D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选D.“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.5、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.6、D【解析】

解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.7、C【解析】

从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.8、A【解析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.考点:简单几何体的三视图.9、C【解析】试题分析:根据n边形的内角和公式(n-2)×180º可得八边形的内角和为(8-2)×180º=1080º,故答案选C.考点:n边形的内角和公式.10、C【解析】

如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CH⊥y轴于H.由题意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把点C(﹣1,3)代入,得到k2=﹣3,故选C.【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11、A【解析】圆柱体的底面积为:π×()2,∴矿石的体积为:π×()2h=.故答案为.12、B【解析】试题分析:∵2<<3,∴1<-1<2,即-1在1到2之间,故选B.考点:估算无理数的大小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、65°或25°【解析】

首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=•(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14、【解析】

根据事件的描述可得到描述正确的有①②③⑥,即可得到答案.【详解】∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是,故答案为:.【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.15、34°【解析】分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.详解:∵直径AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.16、100(1+)【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.17、80°.【解析】

如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.18、1【解析】

根据一元二次方程的定义可得:,且,求解即可得出m的值.【详解】解:由题意得:,且,解得:,且,∴故答案为:1.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)矩形的周长为4m;(2)矩形的面积为1.【解析】

(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.20、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设,将点(10,200)、(15,150)分别代入,则,解得,∴,∵蜜柚销售不会亏本,∴,又,∴,∴,∴;(2)设利润为元,则==,∴当时,最大为1210,∴定价为19元时,利润最大,最大利润是1210元;(3)当时,,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.21、(1)m=30,n=20,图详见解析;(2)90°;(3).【解析】分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.22、(1)证明见解析;(2)AE=.【解析】

(1)连结AC、AC′,根据矩形的性质得到∠ABC=90°,即AB⊥CC′,根据旋转的性质即可得到结论;(2)根据矩形的性质得到AD=BC,∠D=∠ABC′=90°,根据旋转的性质得到BC′=AD′,AD=AD′,证得BC′=AD′,根据全等三角形的性质得到BE=D′E,设AE=x,则D′E=2﹣x,根据勾股定理列方程即可得到结论.【详解】解::(1)连结AC、AC′,∵四边形ABCD为矩形,∴∠ABC=90°,即AB⊥CC′,∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四边形ABCD为矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E与△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,设AE=x,则D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】

(1)利用列举法,列举所有的可能情况即可;

(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,,,,,,,,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,∴在规划2中,(小黄赢).∵,∴小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.24、(1);(2)见解析;(3)存在,2【解析】

(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案.【详解】解:(1)四边形是正方形,,,,,,在和中,在和中,,故答案为;(2)证明:由(1)可知,,四边形是平行四边形.(3)解:存在,理由如下:是等腰直角三角形,最短时,的面积最小,当时,最短,此时,的面积最小为.【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.25、(1)作图见解析,,;(2)①k=6;②.【解析】

(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.【详解】解:(1)点,,,,如图1,由旋转知,,,,点在轴正半轴上,点在轴负半轴上,,;(2)过点作轴于,过点作轴于,过点作于,,,,,,,,,,,,,,,,,设,,,,点,在双曲线上,,(Ⅰ)①,,,,(Ⅱ),联立(Ⅰ)(Ⅱ)解得:,,;②如图3,,,,,,,直线的解析式为(Ⅲ),双曲线(Ⅳ),联立(Ⅲ)(Ⅳ)得:,即:,△,直线与双曲线有唯一公共点,△,△,(舍或,,.故答案为:.【点睛】此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论