下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.2.在平行六面体中,M为与的交点,若,,则与相等的向量是()A. B. C. D.3.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.404.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.115.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.36.若复数满足(是虚数单位),则的虚部为()A. B. C. D.7.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为()A.3 B.2 C. D.8.如果,那么下列不等式成立的是()A. B.C. D.9.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D.10.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A. B. C. D.11.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得12.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数二、填空题:本题共4小题,每小题5分,共20分。13.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.14.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.15.已知集合,若,且,则实数所有的可能取值构成的集合是________.16.已知数列递增的等比数列,若,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.18.(12分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.19.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.20.(12分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.21.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.22.(10分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.2.D【解析】
根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.3.C【解析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.4.A【解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.5.B【解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.6.A【解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.7.C【解析】
设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,,,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.8.D【解析】
利用函数的单调性、不等式的基本性质即可得出.【详解】∵,∴,,,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.9.C【解析】
由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.10.A【解析】
每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.11.A【解析】
根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.12.C【解析】
根据函数奇偶性的性质即可得到结论.【详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13.0.18【解析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.14..【解析】
根据正态分布密度曲线性质,结合求得,即可得解.【详解】根据正态分布,且,所以故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.故答案为:.【点睛】此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.15..【解析】
化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.16.【解析】
,建立方程组,且,求出,进而求出的公比,即可求出结论.【详解】数列递增的等比数列,,,解得,所以的公比为,.
故答案为:.【点睛】本题考查等比数列的性质、通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)把点代入椭圆方程,结合离心率得到关于的方程,解方程即可;(Ⅱ)联立直线与椭圆方程得到关于的一元二次方程,利用韦达定理和中垂线的定义求出线段的中垂线方程即可证明.【详解】(Ⅰ)由已知椭圆过点得,,又,得,所以,即椭圆方程为.(Ⅱ)证明:由,得,由,得,由韦达定理可得,,设的中点为,得,即,,的中垂线方程为,即,故得中垂线恒过点.【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识的综合运用能力;正确求出椭圆方程和利用中垂线的定义正确表示出中垂线方程是求解本题的关键;属于中档题.18.(1)证明见解析(2)【解析】
(1)取的中点,连接,,证明平面得出,再得出;(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案.【详解】(1)证明:取的中点,连接,,,,,,,故,又,,平面,平面,,,分别是,的中点,,.(2)解:四边形是正方形,,又,,平面,平面,在平面内作直线的垂线,以为原点,以,,为所在直线为坐标轴建立空间直角坐标系,则,0,,,1,,,2,,,0,,,1,,,2,,,1,,设平面的法向量为,,,则,即,令可得:,,,,.直线与平面所成角的正弦值为,.【点睛】本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题.19.(1);(2)证明见解析,.【解析】
(1)根据离心率和的面积是得到方程组,计算得到答案.(2)先排除斜率为0时的情况,设,,联立方程组利用韦达定理得到,,根据化简得到,代入直线方程得到答案.【详解】(1)由题意可得,解得,,则椭圆的标准方程是.(2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.设,,直线的方程为联立,整理得则,.因为直线与直线的斜率之和为1,所以,所以,将,代入上式,整理得.所以,即,则直线的方程为.故直线恒过定点.【点睛】本题考查了椭圆的标准方程,直线过定点问题,计算出是解题的关键,意在考查学生的计算能力和转化能力.20.(1)(2)【解析】
(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积.【详解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度书刊发行专用叉车租赁合同
- 2024年度电子商务行业标准制定与推广实施合同
- 2024年度地下水监测井建设承包合同
- 2024年度股权转让合同-某科技有限公司股权转让
- 2024年度棉花采购合同纠纷解决条款
- 二零二四年度采购合同商品质量标准与交货期限
- 2024年度租赁期满解约合同标的物归还条件
- 不锈钢栏杆合同
- 2024年度企业文化塑造合同
- 2024年度人力资源的咨询服务合同
- 非煤地下矿山隐蔽致灾因素普查治理工作方案
- Elisa检测技术课件
- 测量系统分析课件
- 江苏省南京市联合体2023-2024学年七年级上学期期末数学试卷+
- 婚嫁金满期返还险
- 危货运输消防知识培训课件
- 幼儿园小朋友可爱卡通恐龙风格餐前播报餐前分享
- 宫腔镜手术知情同意书
- 大数据培训课件1
- 北师大版数学六年级上册单元真题拔高卷 第6单元《比的认识》(A4 原卷)
- 江西省丰城重点中学2023-2024学年高二上学期第三次月考(12月)数学试题(含答案)
评论
0/150
提交评论