广东省东莞市振安中学2022-2023学年高二数学理月考试题含解析_第1页
广东省东莞市振安中学2022-2023学年高二数学理月考试题含解析_第2页
广东省东莞市振安中学2022-2023学年高二数学理月考试题含解析_第3页
广东省东莞市振安中学2022-2023学年高二数学理月考试题含解析_第4页
广东省东莞市振安中学2022-2023学年高二数学理月考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞市振安中学2022-2023学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列各组向量不平行的是(

A.

B.

C.

D.

参考答案:B2.在某次考试中,甲、乙通过的概率分别为0.7,0.4,若两人考试相互独立,则甲未通过而乙通过的概率为A.0.28 B.0.12 C.0.42 D.0.16参考答案:B【分析】两人考试相互独立,所以是相互独立事件同时发生的概率,按照公式求即可.【详解】甲未通过的概率为0.3,则甲未通过而乙通过的概率为.选B.【点睛】本题考查相互独立事件同时发生的概率,属于基础题.3.四个函数:①;②;③;④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是(

)A.④①②③ B.①④③② C.①④②③ D.③④②①参考答案:C试题分析:研究发现①是一个偶函数,其图象关于y轴对称,故它对应第一个图象,②③都是奇函数,但②在y轴的右侧图象在x轴上方与下方都存在,而③在y轴右侧图象只存在于x轴上方,故②对应第三个图象,③对应第四个图象,④与第二个图象对应,易判断.故按照从左到右与图象对应的函数序号①④②③,故选C.考点:正弦函数的图象;余弦函数的图象.点评:本题考点是正弦函数的图象,考查了函数图象及函数图象变化的特点,解决此类问题有借助两个方面的知识进行研究,一是函数的性质,二是函数值在某些点的符号即图象上某些特殊点在坐标系中的确切位置.4.设,集合A是奇数集,集合B是偶数集.若命题p:,,则(

)A.:, B.:,C.:, D.:,参考答案:C【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【详解】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:?x∈A,2x∈B的否定是::,.故选:C.【点睛】命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.5.已知双曲线C:=1(a>0,b>0)的焦距为2,抛物线y=+1与双曲线C的渐近线相切,则双曲线C的方程为(

) A. B. C. D.参考答案:D考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知条件,根据双曲线的焦距排除A,B,再由抛物线y=+1与双曲线C的渐近线相切排除C.解答: 解:∵双曲线C:=1(a>0,b>0)的焦距为2,∴排除选A和B,∵的渐近线方程为y=±2x,把y=2x代入抛物线y=+1,得,,∴抛物线y=+1与y=2x不相切,由此排除C.故选:D.点评:本题考查双曲线标准方程的求法,在选择题中合理地运用排除法往往能化繁为简,节约答题时间.6.设等差数列{an}的前n项和为Sn,若a1=﹣11,a4+a6=﹣6,则当Sn取最小值时,n等于(

)A.6 B.7 C.8 D.9参考答案:A【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,Sn取最小值.故选A.【点评】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力.7.若实数,满足不等式组则的最小值为(

A.

B.

C.

D.参考答案:A8.若抛物线的焦点与椭圆的右焦点重合,则的值为(

)A.-2 B.2 C.-4 D.4参考答案:D选D椭圆的右焦点为F(2,0)9.在中,,则角C的大小为(

A.600

B.450

C.1200

D.300参考答案:A10.在△ABC中,若,,,则角的大小为(

)A.或

B.或

C.

D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为

参考答案:328略12.命题p:?∈R,,则命题p的否定为__________________.参考答案:?∈R,略13.双曲线的左、右焦点分别为F1、F2,过焦点F2且垂直于x轴的直线与双曲线相交于A、B两点,若,则双曲线的离心率为.参考答案:【考点】双曲线的简单性质.【分析】因为,所以AF1与BF1互相垂直,结合双曲线的对称性可得:△AF1B是以AB为斜边的等腰直角三角形.由此建立关于a、b、c的等式,化简整理为关于离心率e的方程,解之即得该双曲线的离心率.【解答】解:根据题意,得右焦点F2的坐标为(c,0)联解x=c与,得A(c,),B(c,﹣)∵∴AF1与BF1互相垂直,△AF1B是以AB为斜边的等腰Rt△由此可得:|AB|=2|F1F2|,即=2×2c∴=2c,可得c2﹣2ac﹣a2=0,两边都除以a2,得e2﹣2e﹣1=0解之得:e=(舍负)故答案为:【点评】本题给出经过双曲线右焦点并且与实轴垂直的弦,与左焦点构成直角三角形,求双曲线的离心率,着重考查了双曲线的标准方程和简单几何性质等知识,属于基础题.14.已知圆锥侧面展开图为中心角为135°的扇形,其面积为B,圆锥的全面积为A,则A:B为__________.参考答案:圆锥底面弧长,∴,即,,,∴,.15.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽一只,设抽取次品数为,则=____________.参考答案:3抽取次品数满足超几何分布:,故,,,其期望,故.

16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用原料3吨、原料2吨;生产每吨乙产品要用原料1吨、原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗原料不超过13吨,原料不超过18吨,那么该企业可获得最大利润是

万元.参考答案:2717.定义运算?,a?b=S的运算原理如伪代码所示,则式子5?3+2?4=

.参考答案:32【考点】伪代码.【专题】计算题;新定义;分类讨论;试验法;算法和程序框图.【分析】通过程序框图判断出S=a?b的解析式,求出5?3+2?4的值.【解答】解:有程序可知S=a?b=,∴5?3+2?4=5×(3+1)+4×(2+1)=32.故答案为:32.【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知圆A:和圆B:,求与圆A外切而内切于圆B的动圆圆心P的轨迹方程。参考答案:19.(本题满分13分)如图,在三棱锥中,,,,.(Ⅰ)求证:;(Ⅱ)求二面角的正弦值。;参考答案:(Ⅰ)证明

取中点,连结.,.,.,平面.平面,.(Ⅱ)解,,.又,.又,即,且,平面.取中点.连结.,.是在平面内的射影,.是二面角的平面角.在中,,,,.二面角的大小的正弦值为20.已知函数图像上的点处的切线方程为.(1)若函数在时有极值,求的表达式;(2)函数在区间上单调递增,求实数的取值范围.参考答案:f′(x)=-3x2+2ax+b,2分因为函数f(x)在x=1处的切线斜率为-3,所以f′(1)=-3+2a+b=-3,1分

又f(1)=-1+a+b+c=-2得a+b+c=-1.2分(1)函数f(x)在x=-2时有极值,所以f′(-2)=-12-4a+b=0解得a=-2,b=4,c=-35分所以f(x)=-x3-2x2+4x-3.6分(2)因为函数f(x)在区间[-2,0]上单调递增,所以导函数f′(x)=-3x2-bx+b在区间[-2,0]上的值恒大于或等于零,8分则,得b≥4,10分所以实数b的取值范围为[4+∞)

略21.直线L:与椭圆C:交于A、B两点,以OA、OB为邻边作平行四边形OAPB(O为坐标原点).(1)若k=1,且四边形OAPB为矩形,求的值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论