概率与数理统计习题课2_第1页
概率与数理统计习题课2_第2页
概率与数理统计习题课2_第3页
概率与数理统计习题课2_第4页
概率与数理统计习题课2_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章随机变量及其分布

教学要求1.理解随机变量及其概率分布的概念。2.理解随机变量分布函数的概念,掌握分布函数的性质,会计算与随机变量有关的事件的概率。3.理解离散型随机变量及其概率分布的概念,掌握(0-1)分布,二项分布,几何分布,泊松分布及其应用。4.理解连续型随机变量及其概率密度的概念,掌握密度函数的性质,掌握均匀分布,指数分布,正态分布及其应用。5.会求简单的随机变量函数的分布。例1.填空题:(1)同时抛掷三枚硬币,以X表示出现正面的个数,则X的概率分布为___(2)设(3)设X的概率分布为(4)设X0123P1/83/83/81/8(5)设X的概率密度为用Y表示对X的三次独立重复观察中事件出现的次数,则(6)设X的分布为X-4-1024P7/20a2a1/203/20则Y=3X-1-13-4-1511P7/203/206/201/203/20(6)设X的分布为12517P6/203/201/2010/20例2选择题:(1)下列函数中,哪个是X的分布函数(A)(B)(C)(D)(2)设X的分布律为(A);(B);(C);

(3)已知X的分布函数为则常数k和b分别为(A)(B)(C)(D)(D).(4)设X的概率分布为,则随着的增大,概率

(5)设

,概率密度为,则下列等式正确的是(A)单调增大;(B)单调减少;(C)增减性不定;

(D)保持不变。

(A);(B);(C);

(D)

(6)设X的概率分布为

(A)N(1,4)(B)N(0,1)(C)N(1,1)(D)N(1,2)例3设试验成功的概率为,失败的概率为,独立重复试验直到(1)成功两次为止;(2)成功三次为止,分别求所需试验次数的概率分布。解:(1)设X表示直到成功两次为止的所需试验次数X的可能取值为2,3,4...(2)设Y

表示直到成功三次为止所需试验次数,则

Y

可能取值为3,4,5...

例4一批产品由9个正品3个次品组成,从这批产品中每次任取一个,取后不放回,直到取到正品为止,由X表示取到的次品个数,写出X的概率分布及分布函数。解:X所有可能取值为0,1,2,3.故X的分布律为:X0123P3/49/449/2201/220当当当当当例5设X的概率密度为解:

(1)由的性质,有求(1)系数k;(2)X的分布函数;(3)当,当,当(3)

例6设X的概率密度为解:

设Y的分布函数为;密度为求的概率密度。当当当故例7已知X的概率密度为且,求(1)常数a,b的值;(2)

解:

(1)由得到再由联立解得:(2)例8在电源电压不超过200V,在200V~240V之间和超过240V这三种情况下,某种电子元件损坏的概率分别为0.1,0.001,0.2,假设电源电压服从正态分布,求:(1)该电子元件损坏的概率;(2)该电子元件损坏时,电源电压在200V~240V之间的概率。解:

设A表示“电子元件损坏”,分别表示“电压不超过200V”,“电压在200V~240V之间”和“电压超过240V

”。由(1)由全概率公式,得

(2)根据贝叶斯公式,有

例9公共汽车门的高度是按男子与车门顶不碰头的概率在0.01以下设计的。设男子身高,问车门高度为多少?解:设车门高度为h,按设计要求求:随机变量例10已知X的概率密度为解:当当两端同时对y求导,得

所以

例11设X在(0,1)服从均匀分布,求(1)(2)的概率密度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论