版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等传递过程动量传递张浩勤教授1主要内容
第二章动量传递的基本规律:连续性方程运动方程奈维-斯托克斯方程(层流)第三章奈维-斯托克斯方程应用平壁间流动园管内流动爬流势流平面流第四章边界层流动第五章湍流理论(雷诺方程(湍流))动量传递的概念2动量传递的应用了解流场中速度、压力的分布规律;解决与流体输送相关的单元操作过程中的问题;为热质传递研究奠定基础。3数学补充42场论基础知识5(2)场论67本章重点:1掌握研究问题的两种方法并能够应用;
2偏导数、全导数、随体导数的差别;
3连续性方程的推导和应用条件;4运动方程推导思路和应用条件;5熟悉场论中的数学表示方法。第二章连续性方程与运动方程8研究对象牛顿流体、单一组分、等温流动系统9第一节描述流动问题的两种观点拉格朗日(Lagrange)观点:在流体运动的空间中选择某一固定质量的流体微元,观测者随此质点运动(相对坐标系)。观测其特征变化来研究整个流体运动规律。质量固定,位置和体积可变。如随船观水,气球探测。10欧拉观点:流体运动的空间中固定某一位置和体积,分析这点所通过的流体的特性变化来研究整个流体的运动规律位置和体积固定,质量随时间变化。如岸上观水,地面观测站。强调:对同一流场,无论采用哪种观点,其结果都是相同的,只不过采用的观点得当,分析问题方便、简捷一些。11流线与轨线轨线:流体质点在流场中的运动轨迹,是拉格朗日法考察流体运动所得的结果。轨线上某一点的切线代表质点的运动方向,轨迹给出了同一质点在不同时刻的速度方向。(在黑板上画图)1213流线:流线时这样的空间曲线,对于某一固定时刻,曲线上任一点处的速度方向和曲线在该点的切线方向重合。流线是欧拉法考察的结果。流线是同一时刻由不同流体质点所占据的空间曲线。它给出该时刻不同质点的运动方向。(在黑板上画图)1415注意:流线的性质:①在任一时刻通过流场中任何一个空间点都有一条流线,所以流场中的流线是流线簇。在流线簇中,流线越密,代表速度越大。②流线是不能相交的。因为空间上每一点只能有一个速度方向,所以不能有两条流线同时通过一点。即流体不能穿越流线流动。特例:在速度为零或无限大的空间点上例外,速度为零的点称为驻点,速度无限大的点称为奇点。③流线的形状和位置,在稳态流动中不随时间变化,在非稳态流动中,一般要随时间变化。④对于稳态流动,流场中任何参数均不随时间变化,故流线方程与轨线方程重合。1617流线方程18192021系统与控制体控制体:对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界称为控制面。控制面总是封闭的。应当指出,占据控制体的诸流体质点可以随时间而变化。特点:①控制面相对于坐标系是固定的。②在控制面上可以有质量交换(即有流体进入或流出控制面)、热量交换(能量(热、功、内能等)输入或输出控制面);控制面上也可以受到控制体以外施加在控制体物质上的力而引起动量交换。③控制体内部质量、热量、动量的储存量可能改变。④控制体可以是运动的,也可以是固定的。控制体是欧拉法的结果。22系统:所取控制体无质量穿越其表面,既没有流体进出,则此固定质量的控制体称为系统。特点:①系统的边界面的形状、位置可以随时间而变化,系统的边界随着流体一起运动。②在系统的边界上,可以有热量交换、动量交换,但是没有质量交换。系统是拉格朗日观点的结果。小结:拉格朗日观点系统轨线欧拉观点控制体流线23不同的导数偏导数:某固定点处流体密度ρ随时间的变化率。全导数:流体密度由于位置和时间变化而产生的变化率(观测者在流体中以任意速度运动)。随体导数:观测者随流体随波逐流运动,即观测者在流体中与流体流速完全相同的速度运动。此时:24随体导数25随体导数一般情况,算符可用下式表示:算符所表示的函数称为随体导数或实体导数、拉格朗日导数。26第二节连续性(微分质量衡算)方程前提条件:单组分等温流动系统分析方法:欧拉法控制体:流体质点
27
(输出的质量流率)—(输入的质量流率)
+累积的质量速率=0
28第二节连续性(微分质量衡算)方程在x左侧面:输入微元体积的质量流率输出微元体积的质量流率zxydzdxdy(x,y,z)dydzρuxdydz29微分质量衡算方程于是得到x方向输出与输入微元体积的质量流率之差:同理在y方向:Z方向:30微分质量衡算方程(输出的质量流率)—(输入的质量流率)=累积的质量流率=质量衡算:出—入+累积=031微分质量衡算方程写成向量形式:展开:连续方程式一般形式32微分质量衡算方程的进一步分析与随体导数定义:得:(2-7b)33随体导数的意义对流导数:由于流体质点运动,从一个点转移到另一个点时发生的变化;所以上述方程式表明:流体微元体积上的一个点在dθ时间内从进入微元体积的空间位置(x,y,z)移动到微元体积的空间位置(x+dx,y+dy,z+dz)时,流体密度ρ随间的变化率.z(x,y,z)xydzdxdy34微分质量衡算方程的进一步分析∵ρv=1,对该式求随体导数,得:(2-9)比较(2-7b)与(2-9):体积变形率速度向量的散度35体积变性率和线性变型率x1x236几种特殊情况下连续方程简化稳态流动,密度不随时间变化,即简化为:对于不可压缩流体,ρ于时间与空间无关:不可压缩流体的连续性方程。(2-12)37柱坐标和球坐标连续性方程式zxy(x,y,z)或(r,Φ,θ)zxy(x,y,z)或(r,θ,z)θΦθ38柱坐标和球坐标连续性方程式柱坐标:球坐标:39思考题:推导球坐标系的连续性方程。参见浙大教材40第三节运动方程衡算基础:动量守恒方程研究方法:拉格朗日法41用应力表示的运动方程(一)动量守恒定律在流体微元上的表达式(拉格朗日法)牛顿第二定律:物体动量随时间的变化率等与该物体所受外力的矢量和。(2-16)F—诸外力的向量合;M—流体的质量U—流体的速度向量;θ—时间。
惯性力=外力=(质量)*加速度42拉格朗日法:在流体运动的空间内,选择某一固定质量的流体微元(M为常数),观察者追随此流体微元且一起运动(在相对坐标系下,可以用随体导数的概念来描述),并根据此运动流体微元的变化状况来研究整个流场中流体运动规律。固定质量的流体微元:体积
质量=常数所以
43微分动量衡算方程对于微元流体在x、y、z三个方向:力:质量力或体积力FB,作用在整个微元流体上;表面力或机械力,作用在微元流体诸表面上的外力,计为FS.它又可分为法向力和剪应力。44(二)、作用于微元体上的外力分析
合外力(惯性力)=质量力+表面力质量力作用在所有流体质点上的力,重力离心力电场力等。表面力:作用在控制面上的力,在此即作用在流动着的流体微元表面的力.机械力(接触力)这些力是由该控制体毗邻的流体所产生的,由静压力和粘性力提供.对于单位面积而言,称为表面应力.表面应力分为法向应力和切向应力(剪应力).表面力=法向应力+切向应力45质量力(重力)在x方向上:dFxB=XρdxdydzX-单位质量流体的质量力在x方向上的分量。重力X=gconβ=Fxg当X方向为水平方向时,X=Fxg=0,β=90度当X方向为垂直方向,X=g=9.81m/s2X与重力方向可以相同,也可以不同βgx46表面力yzxτxxτxyτxzτxy
第一个下表表示应力分量的作用面与x轴垂直。第二个下标y表示应力方向为y轴方向。
τxx
表示法向
应力分量。拉伸方向(向外)为正,压缩方向(向内)为负。微元流体在运动时,由于法向应力和剪应力的存在,使其发生形变。47表面力每一表面的机械应力均可分解成三个平行于x、y、z三个坐标轴的应力分量3个六个表面,3×6=18个zxydzdxdy48当小微元体体积缩小为一点时,相对表面上的法向应力与切线应力都是相应地大小相等、方向相反的。故只需采用9个机械应力就可以完全表达:3个法向分量,6个切线分量。以后将证明该矩阵为对称矩阵49
6个切向应力分量之间的关系上述6个剪应力可以使小微元旋转且彼此不独立。可以由此关联起来。这四个剪应力对于旋转轴线产生力矩:力矩=质量×旋转半径的平方×角加速度
dy/2dx/2odx/2dy/2xy50表面力力矩=质量×旋转半径×角加速度∴当小微元体积趋近于0使旋转半径趋近于0∴同理:51用应力表示的运动方程zxydzdxdy简化后:X方向表面力52X方向总的外力分量dFx外力分量=质量力分量+表面力分量(2-27a)53以应力项表示的粘性流体运动微分方程54问题与讨论55应力与应变速率的关系寻找关系如何着手?粘性流体在运动时各层之间会发生相对运动,那么粘性与流体的形变之间必然有一定的联系。在三维流动中,应力与应变速率之间的关系十分复杂,法向应力的作用难以判断。思路:将刚体力学中应力与应变的关系,改进后用于流体力学。参考书:王绍亭,陈涛,动量热量与质量传递,天津科学技术出版社,1986年。56一维流动剪应力(τ—u联系起来)57585960三维流动,显然,由于粘性力的作用,流体微元会发生变形.61对三维流动,如图所示的流体微元,其体积为。由力的分析可知,它在流动过程中会发生体积形变,即由原来的长方形六面微元体变为一个菱形六面微元体。对于x-y平面而言,起作用的切向应力分量有4个,其中τxy
和τyx分别作用在与x-y平面相垂直的4个平面上。相对应边上的两个应力方向等值反向。经过微分时间dθ后,原来的长方形变为菱形(图中虚线所示),相邻两条边线的夹角减小。626364剪应力(2-34a)(2-34b)(2-34c)τ与速度关联起来65法向应力在三维流动中,判断法向应力的作用更为困难。其推导过程较长,我们不打算详细介绍。同学们可参见其他参考书中的推导。在此,我们主要介绍一些基本的概念。流体静止时,法向应力在数值上等于流体的静压力,但方向相反。τxx=τyy=τzz=-p或p=-1/3(τxx+τyy+τzz)66在流动流体中,法向应力由下列两种类型的应力所提供,其一为静压力,它使流体微元承受压缩应力,发生体积形变;其二是由流体流动时的粘性应力的作用产生,其结果是使流体微元在法线方向上承受拉伸或压缩应力,发生线性形变。法向应力与压力和粘性应力的关系,可写为:
σ表示粘性应力引起的附加法向应力。6768法向应力(2-35a)(2-35b)(2-35c)τ与速度关联起来69剪应力和法线应力(2-34a)(2-34b)(2-34c)(2-35a)(2-35b)(2-35c)70粘性流体的运动微分方程
(Navier-Stokes方程)将(2-342-35)代入上式:71粘性流体的运动微分方程
(Navier-Stokes方程)其它方向略。见2-365个未知数,ux,uy,uz,ρ,p加上连续性方程和状态方程f(ρ,p)=0,5个方程,原则上可解。但由于非线性偏微分方程,目前还无法求其通解。为此,需根据实际加以简化,去掉一些项,使之可解72讨论惯性力质量力压力粘性力73方程简化对于不可压缩流体见2-3774柱坐标75球坐标76球坐标77讨论奈维-斯托克斯方程是用于牛顿流体,层流流动。奈维-斯托克斯方程是单位体积微元力的平衡式惯性力重力压力粘性力在不同的流动系统中,四种力所起的作用不同,视具体的情况可以简化。例如,对于理想流体,粘度等于0,粘性力项必然等于0。一般而言,对粘性流体管内流动,重力的作用较小。但对于瀑布类的流动,重力的作用是不可低估的。对于静止流体,速度等于0,可以简化为静力学方程式。78奈维-斯托克斯方程原则上是可解方程。未知数ux
uy
uzpρ共5个方程数奈维-斯托克斯方程3连续性方程1流体状态方程1共5个例如,对于不可压缩均质流体ρ=常数实际上,非线性方程组的解析解求起来十分困难,只能对简单的定解条件的情况得到。大量的复杂的情况可借助于数值求解。79定解条件奈维-斯托克斯方程和定解条件一起才构成完整的数学模型。初始条件:传递现象满足的初始状态条件。θ=0,ux
uy
uzpρ的值对于稳态流动,没有初始条件。边界条件:传递现象在边界上满足的条件。边界形式多种多样,具体问题要具体分析。80常见的有几种:固体壁面的粘附条件:粘性流体在静止壁面上速度为零。在运动壁面上流体速度与运动壁面的速度相等。②自由表面通常自由表面指一个流动的液体暴露于气体中的那一部分界面。自由表面上压力相等。一般的情况,认为在气液界面上,切应力是连续的。如果,气液界面的摩擦力可以忽略,可以认为剪应力为零。③无穷远处的边界条件参见绕流的分析。81消去质量力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体系合同评审过程的衡量目标
- 2025年锦州货运从业资格证考试模拟
- 2025年北京货运从业资格证试题答题器
- 电力设备公司员工停薪留职
- 建筑防猫害安全施工协议
- 图书馆消毒操作规程
- 汽车制造空气净化合同
- 厂房改造项目租赁承包合同
- 酒店走廊绿植装饰合作协议
- 政府信息资产整合办法
- 2024年1月份21起典型事故案例汇总及2024年节前安全检查与春节安全专题培训
- 湖南省怀化市2023-2024学年九年级上学期1月期末历史试题(无答案)
- 城市排水系统雨污分流改造
- 《小肠解剖及临床》课件
- 高端医疗器械招商方案
- 肝衰竭病人的护理
- 一年级诗词大会(经典诵读比赛)课件
- GB/T 13296-2023锅炉、热交换器用不锈钢无缝钢管
- 公众号运维服务方案
- 第三课 民族问题的内涵与产生根源 (1)课件
- 计算表-V型滤池
评论
0/150
提交评论