版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).1.棱柱、棱锥、棱台的表面积柱体、锥体、台体的侧面积,就是各侧面面积之和,
表面积是各个面的面积的和,即侧面积与底面积之和.2.旋转体的表面积3.几何体的体积公式[思考探究]如何求不规则几何体的体积?提示:对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决.1.已知某球的体积大小等于其表面积大小,则此球的半
径是(
)A.
B.3C.4D.5解析:设球半径为R,则πR3=4πR2,∴R=3.答案:B2.圆柱的一个底面积是S,侧面展开图是一个正方形,那
么这个圆柱的侧面积是(
)A.4πSB.2πS
C.πSD.πS解析:底面半径是,所以正方形的边长是2π
=2,故圆柱的侧面积是(2)2=4πS.答案:A3.将边长为a的正方形ABCD沿对角线AC折起,使BD=a,
则三棱锥D-ABC的体积为(
)A.B.C.a3D.a3
解析:设正方形ABCD的对角线AC、BD相交于点E,沿AC折起后依题意得,当BD=a时,BE⊥DE,所以DE⊥平面ABC,于是三棱锥D-ABC的高为DE=
a,所以三棱锥D-ABC的体积V=答案:D4.若棱长为3的正方体的顶点都在同一球面上,则该球
的表面积为
.解析:正方体的体对角线为球的直径.答案:27π5.已知一个几何体的三视图如图所示,则此几何体的体积
是
.解析:此几何体为一圆锥与圆柱的组合体.圆柱底面半径为r=a,高为h1=2a,圆锥底面半径为r=a,高为h2=a.故组合体体积为V=πr2h1+πr2h2=2πa3+πa3=.答案:求解有关棱柱、棱锥、棱台等多面体的表面积的关键是利用几何图形的性质找到其几何图形特征,从而体现出高、斜高、边长等几何元素间的关系,如棱柱中的矩形、棱锥中的直角三角形、棱台中的直角梯形等.(2009·宁夏、海南高考)一个棱锥的三视图如图,则该棱锥的表面积(单位:cm2)为(
)A.48+12
B.48+24C.36+12D.36+24[思路点拨][课堂笔记]
如图所示三棱锥.AO⊥底面BCD,O点为BD的中点,BC=CD=6(cm),BC⊥CD,AO=4(cm),AB=AD.S△BCD=6×6×=18(cm2),S△ABD=×6×4=12(cm2).取BC中点为E.连结AE、OE.可得AO⊥OE,AE===5(cm),∴S△ABC=S△ACD=×6×5=15(cm2),∴S表=18+12+15+15=(48+12)(cm2).[答案]
A1.柱体、锥体、台体的体积公式之间有如下关系,用图
表示如下:2.求锥体的体积,要选择适当的底面和高,然后应用公
式V=Sh进行计算即可.常用方法为:割补法和等体
积变换法:
(1)割补法:求一个几何体的体积可以将这个几何体分
割成几个柱体、锥体,分别求出锥体和柱体的体积,
从而得出几何体的体积.(2)等体积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积性”可求“点到面的距离”.
(2009·辽宁高考)正六棱锥P-ABCDEF中,G为PB的中点.则三棱锥D-GAC与三棱锥P-GAC体积之比为(
)A.1∶1B.1∶2C.2∶1D.3∶2[思路点拨][课堂笔记]∵G为PB中点,∴VP-GAC=VP-ABC-VG-ABC=2VG-ABC-VG-ABC=VG-ABC.又多边形ABCDEF是正六边形,∴S△ABC=S△ACD,∴VD-GAC=VG-ACD=2VG-ABC,∴VD-GAC∶VP-GAC=2∶1.[答案]
C1.圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的
面积,因此弄清侧面展开图的形状及侧面展开图中各
线段与原几何体的关系是掌握它们的面积公式及解决
相关问题的关键.2.计算柱体、锥体、台体的体积关键是根据条件找出相应
的底面积和高,要充分利用多面体的截面及旋转体的轴
截面,将空间问题转化为平面问题.
如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°).[思路点拨][课堂笔记]如图所示,过C作CO1⊥AB于O1,在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R,∴AC=R,BC=R,CO1=R,∴S球=4πR2,=π×R×R=πR2,=π×R×R=πR2,∴S几何体表=S球++=4πR2+πR2+πR2=πR2.∴旋转所得几何体的表面积为πR2.能否求出该几何体的体积?=πR3-πO1C2(AO1+BO1)=πR3-π×(R)2·2R=πR3-πR3=πR3.解:V几何体=V球-=πR3-πO1C2·AO1-πO1C2·BO1几何体的折叠与展开问题是立体几何的重要内容之一,解决折叠与展开问题的关键是弄清折叠与展开前后位置关系和数量关系的变化情况,从而画出准确的图形解决问题.2009年全国高考Ⅱ中出现了正方体的折叠与展开问题,很好的考查了学生的空间想象能力以及推理能力,代表了一种考查方向.[考题印证](2009·全国卷Ⅱ)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是
(
)A.南B.北
C.西
D.下【解析】
如图所示.规律:展开图中间隔一个为相对的面.【答案】
B
[自主体验]
已知一多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该多面体的体积V=
.解析:该多面体是一个正方体和正四棱锥的组合体,正四棱锥的底面为边长为1的正方形,侧棱长为1.由图知,OB=BD=,SB=1,∴SO=∴V四棱锥=∴V多面体=1+.答案:1+1.把球的表面积扩大到原来的2倍,那么体积扩大到原来
的(
)A.2倍B.2倍
C.倍
D.倍解析:设球原来半径为r,则S=4πr2,V=πr3,又设扩大后半径为R,则4πR2=8πr2,∴R=r,∴V扩=πR3=π(r)3,∴=2.答案:B2.(2009·陕西高考)若正方体的棱长为,则以该正方体
各个面的中心为顶点的凸多面体的体积为(
)A.B.C.D.
解析:这个凸多面体由两个全等的正四棱锥组成,正四棱锥的底面边长为=1,高等于,所以体积V=2××12×=.答案:B3.一个圆台的两底面的面积分别为π、16π,侧面积为25π,
则这个圆台的高为(
)A.3B.4C.5D.解析:由圆台侧面积公式得S=π(R+r)l=π(4+1)l=25π.得l=5,故高为=4.答案:B4.(2010·广州模拟)将圆心角为,面积为3π的扇形,作
为圆锥的侧面,则圆锥的表面积等于
.解析:设圆锥的母线长为l,则有×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《冠心病不稳定型心绞痛中医证型与凝血功能相关性研究》
- 中医医养结合协议书(2篇)
- 2024年度物流服务合同:某物流公司为某电商提供配送服务
- 2024年度委托合同的受托人职责界定
- 04版商业秘密保护与许可合同:某公司与合作伙伴之间的合同
- 跨境电商物流配送研究
- 个性化髋关节康复方案
- 高血脂与心脏病关联性分析
- 2024年度演艺活动保证金合同
- 儿童语言发展的个体差异及干预策略研究
- 机械工程导论-基于智能制造(第2版)第3章 机械设计与现代设计方法
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 任务二:诗歌朗诵教案 人教版
- 2024年福建省福州三牧中学中考三模英语试题(原卷版)
- DLT 572-2021 电力变压器运行规程
- DL∕T 1764-2017 电力用户有序用电价值评估技术导则
- 四年级上册英语教案-UNIT FOUR REVISION lesson 14 北京版
- 公务员职业道德建设和素质能力提升培训课件(共37张)
- 营养风险筛查与评估课件(完整版)
- 2024入团积极分子入团考试题库(含答案)
- 对外投资合作国别(地区)指南 -巴林-20240529-00467
评论
0/150
提交评论