2023年铁岭师范高等专科学校高职单招(数学)试题库含答案解析_第1页
2023年铁岭师范高等专科学校高职单招(数学)试题库含答案解析_第2页
2023年铁岭师范高等专科学校高职单招(数学)试题库含答案解析_第3页
2023年铁岭师范高等专科学校高职单招(数学)试题库含答案解析_第4页
2023年铁岭师范高等专科学校高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年铁岭师范高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B2.下列三句话按“三段论”模式排列顺序正确的是()

①y=sin

x(x∈R

)是三角函数;②三角函数是周期函数;

③y=sin

x(x∈R

)是周期函数.

A.①②③

B.②①③

C.②③①

D.③②①答案:B3.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.4.已知两个非空集合A、B满足A∪B={1,2,3},则符合条件的有序集合对(A,B)个数是()A.6B.8C.25D.27答案:按集合A分类讨论若A={1,2,3},则B是A的子集即可满足题意,故B有7种情况,即有序集合对(A,B)个数为7若A={1,2,}或{1,3}或{2,3}时,集合B中至少有一个元素,故每种情况下,B都有4种情况,故有序集合对(A,B)个数为4×3=12若A={1}或{3}或{2}时集合中至少有二个元素,故每种情况下,B都有2种情况,故有序集合对(A,B)个数为2×3=6综上,符合条件的有序集合对(A,B)个数是7+12+6=25故选C5.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A6.函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有()

A.f(x+y)=f(x)f(y)

B.f(x+y)=f(x)+f(y)

C.f(xy)=f(x)f(y)

D.f(xy)=f(x)+f(y)答案:A7.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.8.函数f(x)=2|log2x|的图象大致是()

A.

B.

C.

D.

答案:C9.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.10.图为一个几何体的三视国科,尺寸如图所示,则该几何体的体积为()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由图中数据,下部的正三棱柱的高是3,底面是一个正三角形,其边长为2,高为3,故其体积为3×12×2×3=33上部的球体直径为1,故其半径为12,其体积为4π3×(12)3=π6故组合体的体积是33+π6故选C11.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()

A.

B.

C.

D.

答案:C12.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()

A.

B.

C.

D.答案:D13.设=(3,4),=(sinα,cosα),且⊥,则tanα的值为()

A.

B.-

C.

D.-答案:D14.(不等式选讲)

已知a>0,b>0,c>0,abc=1,试证明:.答案:略解析::证明:由,所以同理:

相加得:左³……………(10分)15.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是()

A.有99%的人认为该栏目优秀

B.有99%的人认为该栏目是否优秀与改革有关系

C.有99%的把握认为电视栏目是否优秀与改革有关系

D.没有理由认为电视栏目是否优秀与改革有关系答案:D16.若=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D17.若log

23(x-2)≥0,则x的范围是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故为(2,3].18.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()

A.三角形中有两个内角是钝角

B.三角形中有三个内角是钝角

C.三角形中至少有两个内角是钝角

D.三角形中没有一个内角是钝角答案:C19.频率分布直方图的重心是()

A.众数

B.中位数

C.标准差

D.平均数答案:D20.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为()A.3,5B.-3,5C.1,5D.5,-3答案:因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.故选B.21.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()

A.

B.

C.

D.答案:D22.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31223.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3324.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.25.系数矩阵为.2132.,解为xy=12的一个线性方程组是______.答案:可设线性方程组为2132xy=mn,由于方程组的解是xy=12,∴mn=47,∴所求方程组为2x+y=43x+2y=7,故为:2x+y=43x+2y=7.26.已知a,b,c,d都是正数,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,则S的取值范围是______.答案:∵a,b,c,d都是正数,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故为:(1,2)27.对于回归方程y=4.75x+2.57,当x=28时,y

的估计值是______.答案:∵回归方程y=4.75x+2.57,∴当x=28时,y的估计值是4.75×28+2.57=135.57.故为:135.57.28.直线kx-y+1=3k,当k变动时,所有直线都通过定点

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C29.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).30.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.31.根据学过的知识,试把“推理与证明”这一章的知识结构图画出来.答案:根据“推理与证明”这一章的知识可得结构图,如图所示.32.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因为直线的斜率是其倾斜角的正切值,当倾斜角大于90°小于180°时,斜率为负值,当倾斜角大于0°小于90°时斜率为正值,且正切函数在(0°,90°)上为增函数,由图象三条直线的倾斜角可知,k2<k1<k3.故选C.33.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D34.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.35.斜二测画法的规则是:

(1)在已知图形中建立直角坐标系xoy,画直观图

时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;

(2)

已知图形中平行于x轴或y轴的线段,在直观图中分别画成

______;

(3)已知图形中平行于x轴的线段的长度,在直观图中

______;平行于y轴的线段,在直观图中

______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半36.下列函数f(x)与g(x)表示同一函数的是

()A.f(x)=x0与g(x)=1B.f(x)=2lgx与g(x)=lgx2C.f(x)=|x|与g(x)=(x)2D.f(x)=x与g(x)=3x3答案:A、∵f(x)=x0,其定义域为{x|x≠0},而g(x)的定义域为R,故A错误;B、∵f(x)=2lgx,的定义域为{x|x>0},而g(x)=lgx2的定义域为R,故B错误;C、∵f(x)=|x|与g(x)=(x)2=x,其中f(x)的定义域为R,g(x)的定义域为{x|x≥0},故C错误;D、∵f(x)=x与g(x)=3x3=x,其中f(x)与g(x)的定义域为R,故D正确.故选D.37.将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是()A.14B.13C.12D.23答案:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率

P(A)=13.故选B38.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4839.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.40.已知曲线,

θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()

A.锐角三角形

B.钝角三角形

C.直角三角形

D.等腰三角形答案:C41.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.42.不等式3≤|5-2x|<9的解集为()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D43.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a=1

C.a>1

D.以上均不对答案:C44.数集{1,x,2x}中的元素x应满足的条件是______.答案:根据集合中元素的互异性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故为:x≠1且x≠12且x≠0.45.设集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件答案:B46.已知a=5-12,则不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上单调递减∵logax>loga5∴0<x<5故为:(0,5)47.2005年10月,我国载人航天飞船“神六”飞行获得圆满成功.已知“神六”飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200公里、250公里.设地球半径为R公里,则此时飞船轨道的离心率为______.(结果用R的式子表示)答案:(I)设椭圆的方程为x2a2+y2b2=1由题设条件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25则此时飞船轨道的离心率为25225+R故为:25225+R.48.试求288和123的最大公约数是

答案:3解析:,,,.∴和的最大公约数49.已知椭圆C:+y2=1的右焦点为F,右准线l,点A∈l,线段AF交C于点B.若=3,则=(

A.

B.2

C.

D.3答案:A50.若长方体的三个面的对角线长分别是a,b,c,则长方体体对角线长为()A.a2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:设同一顶点的三条棱分别为x,y,z,则x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),则对角线长为12(a2+b2+c2)=22a2+b2+c2.故选C.第2卷一.综合题(共50题)1.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A2.已知随机变量ξ服从正态分布N(2,0.2),P(ξ≤4)=0.84,则P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵随机变量ξ服从正态分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故选A.3.正方体的表面积与其外接球表面积的比为()A.3:πB.2:πC.1:2πD.1:3π答案:设正方体的棱长为a,不妨设a=1,正方体外接球的半径为R,则由正方体的体对角线的长就是外接球的直径的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面积为:S球=4πR2=3π.则正方体的表面积与其外接球表面积的比为:6:3π=2:π.故选B.4.抛物线y=14x2的焦点坐标是______.答案:抛物线y=14x2

即x2=4y,∴p=2,p2=1,故焦点坐标是(0,1),故为(0,1).5.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.6.|a|=4,|b|=5,|a+b|=8,则a与b的夹角为______.答案:设a与b的夹角为θ因为|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故为arccos23407.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.8.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=______.答案:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为(4,π3),所以P的直角坐标(2,23),所以|CP|=(2-2)2+(23-0)2=23.故为:23.9.一个算法的流程图如图所示,则输出的S值为______.答案:根据程序框图,题意为求:s=2+4+6+8,计算得:s=20,故为:20.10.在直角坐标系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲线的解析式是:______.答案:由题意并根据cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故为(x+1)2+(y-2)2=9.解析:在直角坐标系中,11.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为______.答案:因为A(0,4)和点B(1,2),所以直线AB的斜率k=2-41-0=-2故为:-212.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面内的向量的一般形式为a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故选:C13.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.14.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.15.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1则y=2×2+1=5,那么集合A中元素2在B中的象是5故选B.16.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()

A.l1和l2必定平行

B.l1与l2必定重合

C.l1和l2有交点(s,t)

D.l1与l2相交,但交点不一定是(s,t)答案:C17.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4818.某航空公司经营A,B,C,D这四个城市之间的客运业务,它们之间的直线距离的部分机票价格如下:AB为2000元;AC为1600元;AD为2500元;CD为900元;BC为1200元,若这家公司规定的机票价格与往返城市间的直线距离成正比,则BD间直线距离的票价为(设这四个城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A19.若直线x+y=m与圆x=mcosφy=msinφ(φ为参数,m>0)相切,则m为

______.答案:圆x=mcosφy=msinφ的圆心为(0,0),半径为m∵直线x+y=m与圆相切,∴d=r即|m|2=m,解得m=2故为:220.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:

甲批次:0.598

0.625

0.628

0.595

0.639

乙批次:0.618

0.613

0.592

0.622

0.620

我们将比值为0.618的矩形称为“完美矩形”,0.618为标准值,根据上述两个样本来估计两个批次的总体平均数,正确结论是()

A.甲批次的总体平均数与标准值更接近

B.乙批次的总体平均数与标准值更接近

C.两个批次总体平均数与标准值接近程度相同

D.以上选项均不对答案:A21.已知正整数指数函数f(x)的图象经过点(3,27),

(1)求函数f(x)的解析式;

(2)求f(5);

(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.22.椭圆x216+y27=1上的点M到左准线的距离为53,则点M到左焦点的距离为()A.8B.5C.274D.54答案:根据椭圆的第二定义可知M到左焦点F1的距离与其到左准线的距离之比为离心率,依题意可知a=4,b=7∴c=3∴e=ca=34,∴根据椭圆的第二定义有:MF

1d=34∴M到左焦点的距离为MF1=53×34=54故选D.23.下列四个命题中,正确的有

①;

②;

③,使;

④,使为29的约数.答案:两解析::①∵(-3)2-4×2×40,∴①正确;②∵2×(-1)+1=-1x,∴③不正确;④x=1是29的约数,∴④正确;∴正确的有两个点评:本题考查全称命题、特称命题,容易题24.对于空间中的三个向量,

,它们一定是()

A.共面向量

B.共线向量

C.不共面向量

D.以上均不对答案:A25.已知定点A(2,0),圆O的方程为x2+y2=8,动点M在圆O上,那么∠OMA的最大值是()

A.

B.

C.arccos

D.arccos答案:B26.设集合A={1,2},={2,3},C={2,3,4},则(A∩B)∪C=______.答案:由题得:A∩B={2},又因为C={2,3,4},(故A∩B)∪C={2,3,4}.故为

{2,3,4}.27.不等式的解集是

.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.28.刻画数据的离散程度的度量,下列说法正确的是(

(1)应充分利用所得的数据,以便提供更确切的信息;

(2)可以用多个数值来刻画数据的离散程度;

(3)对于不同的数据集,其离散程度大时,该数值应越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正确答案:C29.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°30.已知△ABC中,过重心G的直线交边AB于P,交边AC于Q,设AP=pPB,AQ=qQC,则pqp+q=()A.1B.3C.13D.2答案:取特殊直线PQ使其过重心G且平行于边BC∵点G为重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故选项为A31.某海域有A、B两个岛屿,B岛在A岛正东40海里处.经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是A、B两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3.你能否确定鱼群此时分别与A、B两岛的距离?答案:以AB的中点为原点,AB所在直线为x轴建立直角坐标系设椭圆方程为:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因为焦点A的正西方向椭圆上的点为左顶点,所以a-c=20------(5分)又|AB|=2c=40,则c=20,a=40,故b=203------(7分)所以鱼群的运动轨迹方程是x21600+y21200=1------(8分)由于A,B两岛收到鱼群反射信号的时间比为5:3,因此设此时距A,B两岛的距离分别为5k,3k-------(10分)由椭圆的定义可知5k+3k=2×40=80⇒k=10--------(13分)即鱼群分别距A,B两岛的距离为50海里和30海里.------(14分)32.已知e1

e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:733.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.34.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(

A.4x+3y-13=0

B.4x-3y-19=0

C.3x-4y-16=0

D.3x+4y-8=0答案:A35.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.36.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与直线l:x=的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C37.已知x与y之间的一组数据是()

x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.38.用三段论的形式写出下列演绎推理.

(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;

(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论39.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.答案:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为400x?4+4x万元,400x?4+4x≥2(400x×4)×4x=160,当且仅当1600x=4x即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故为:20.40.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.

(1)试用向量方法证明E、F、G、H四点共面;

(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.答案:(1)证明略(2)平面EFGH∥平面ABCD解析:(1)

分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四点共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG与EF交于E点,∴平面EFGH∥平面ABCD.41.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2242.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.43.如图中的阴影部分用集合表示为______.答案:由已知中阴影部分所表示的集合元素满足是A的元素且C的元素,或是B的元素”,故阴影部分所表示的集合是(A∪C)∩(CUB)故为:B∪(A∩C)44.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(

A.①③

B.②④

C.①②③

D.②③④答案:C45.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.

B.

C.

D.

答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.46.设等比数列{an}的首项为a1,公比为q,则“a1<0且0<q<1”是“对于任意n∈N*都有an+1>an”的

()

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分又不必要条件答案:A47.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B48.设双曲线(a>0,b>0)的右顶点为A,P为双曲线上的一个动点(不是顶点),从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q,R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为()

A.|OP|2<|OQ|•|OR|

B.|OP|2>|OQ|•|OR|

C.|OP|2=|OQ|•|OR|

D.不确定答案:C49.F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是______.答案:设从F1引∠F1PF2的外角平分线的垂线,垂足为R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分线∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根据椭圆的定义,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即动点M到点F2的距离为定值2a,因此,点M的轨迹是以点F2为圆心,半径为2a的圆.故为:以点F2为圆心,半径为2a的圆.50.等边三角形ABC中,P在线段AB上,且AP=λAB,若CP•AB=PA•PB,则实数λ的值是______.答案:设等边三角形ABC的边长为1.则|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP•AB=(CA+AP)•AB=CA•AB+

AP•AB=PA•PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化简-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故为:2-22第3卷一.综合题(共50题)1.已知点P1(3,-5),P2(-1,-2),在直线P1P2上有一点P,且|P1P|=15,则P点坐标为()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C2.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.mNMB.mMNC.MNmD.N答案:由题意知,总体中带有标记的鱼所占比例是NM,故样本中带有标记的个数估计为mNM,故选A.3.已知向量=(x,1),=(3,6),且⊥,则实数x的值为()

A.

B.-2

C.2

D.-答案:B4.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.5.把下列直角坐标方程或极坐标方程进行互化:

(1)ρ(2cosϑ-3sinϑ)+1=0

(2)x2+y2-4x=0.答案:(1)将原极坐标方程ρ(2cosθ-3sinθ)+1=0展开后化为:2ρcosθ-3ρsinθ+1=0,化成直角坐标方程为:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲线的直角坐标方程为x2+y2-4x=0,可得极坐标方程ρ2-4ρcosθ=0,即ρ=4cosθ.6.已知在一场比赛中,甲运动员赢乙、丙的概率分别为0.8,0.7,比赛没有平局.若甲分别与乙、丙各进行一场比赛,则甲取得一胜一负的概率是______.答案:根据题意,甲取得一胜一负包含两种情况,甲胜乙负丙,概率为:0.8×0.3=0.24;甲胜丙负乙,概率为:0.2×0.7=0.14;∴甲取得一胜一负的概率为0.24+0.14=0.38故为0.387.设随机变量x~B(n,p),若Ex=2.4,Dx=1.44则()

A.n=4,p=0.6

B.n=6,p=0.4

C.n=8,p=0.3

D.n=24,p=0.1答案:B8.如图,直线AB是平面α的斜线,A为斜足,若点P在平面α内运动,使得点P到直线AB的距离为定值a(a>0),则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:因为点P到直线AB的距离为定值a,所以,P点在以AB为轴的圆柱的侧面上,又直线AB是平面α的斜线,且点P在平面α内运动,所以,可以理解为用用与圆柱底面不平行的平面截圆柱的侧面,所以得到的轨迹是椭圆.故选B.9.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C10.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C11.下列函数中,与函数y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函数y=x的定义域为R,选项中A,D定义域不是R,是A、D不正确.选项C的对应法则不同,C不正确.故选B.12.已知复数z满足(1-i)•z=1,则z=______.答案:∵复数z满足(1-i)•z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故为12+i2.13.在极坐标系中,曲线ρ=2cosθ所表示图形的面积为______.答案:将原极坐标方程为p=2cosθ,化成:p2=2ρcosθ,其直角坐标方程为:∴x2+y2=2x,是一个半径为1的圆,其面积为π.故填:π.14.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为

______,半径长是

______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.15.经过点P(4,-2)的抛物线的标准方程为()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C16.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或017.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.18.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()

A.6块

B.7块

C.8块

D.9块答案:B19.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.20.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()

A.120

B.240

C.480

D.720答案:C21.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=p2于点M,当|FD|=2时,∠AFD=60°.

(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;

(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.答案:(1)设A(x1,x122p),则A处的切线方程为l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ为等腰三角形.由点A,Q,D的坐标可知:D为线段AQ的中点,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)设B(x2,y2)(x2<0),则B处的切线方程为y=x22x-x224联立y=x22x-x224y=x12x-x214得到点P(x1+x22,x1x24),联立y=x12x-x214y=1得到点M(x12+2x1,1).同理N(x22+2x2,1),设h为点P到MN的距离,则S△=12|MN|•h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①设AB的方程为y=kx+b,则b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面积最小,则应k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,则S′△(t)=(3t2-1)(t2+1)t2,所以当t∈(0,33)时,S(t)单调递减;当t∈(33,+∞)时,S(t)单调递增,所以当t=33时,S取到最小值为1639,此时b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面积取得最小值时的x1值为233.22.下列表述正确的是()

①归纳推理是由部分到整体的推理;

②归纳推理是由一般到一般的推理;

③演绎推理是由一般到特殊的推理;

④类比推理是由特殊到一般的推理;

⑤类比推理是由特殊到特殊的推理.

A.①②③

B.②③④

C.②④⑤

D.①③⑤答案:D23.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:

①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;

③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.

上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.24.已知a为常数,a>0且a≠1,指数函数f(x)=ax和对数函数g(x)=logax的图象分别为C1与C2,点M在曲线C1上,线段OM(O为坐标原点)与曲线C1的另一个交点为N,若曲线C2上存在一点P,且点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标2倍,则点P的坐标为______.答案:设点M的坐标为(m,am),点N的坐标为(n,an)∵点P的横坐标与点M的纵坐标相等∴点P的坐标为(am,m)∵点P的纵坐标是点N的横坐标2倍,∴m=2n而O、M、N三点共线则amm=ann=

am2m2解得:am=4即m=loga4∴点P的坐标为(4,loga4)故为:(4,loga4)25.参数方程x=sin2θy=cosθ+sinθ(θ为参数)的普通方程为______.答案:把参数方程x=sin2θy=cosθ+sinθ(θ为参数)利用同角三角函数的基本关系消去参数化为普通方程为y2=1+x,故为y2=1+x.26.参数方程x=2cosαy=3sinα(a为参数)化成普通方程为______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:参数方程x=2cosαy=3sinα化成普通方程为:x24+y29=1.故为:x24+y29=1.27.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.28.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。

已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。

(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。29.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积为6,则△ABC的面积为()A.18B.54C.64D.72答案:∵ABCD为平行四边形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故选D30.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4

096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C31.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是()

A.0.8

B.0.75

C.0.6

D.0.48答案:B32.在四边形ABCD中,若=+,则()

A.ABCD为矩形

B.ABCD是菱形

C.ABCD是正方形

D.ABCD是平行四边形答案:D33.设z是复数,a(z)表示zn=1的最小正整数n,则对虚数单位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,则最小正整数n为4.故选C.34.若a、b是直线,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),则α、β所成二面角中较小的一个余弦值为______.答案:由题意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论