




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年潇湘职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设O为坐标原点,F为抛物线的焦点,A是抛物线上一点,若·=,则点A的坐标是
(
)A.B.C.D.答案:B解析:略2.
已知向量a,b的夹角为,且|a|=2,|b|=1,则向量a与向量2+2b的夹角等于()
A.
B.
C.
D.答案:D3.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()
A.
B.
C.
D.答案:C4.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A5.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()
A.10种
B.20种
C.25种
D.32种答案:D6.不等式log32x-log3x2-3>0的解集为()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D7.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为()A.640B.320C.240D.160答案:由频数、频率和样本容量之间的关系得到,40n=0.125,∴n=320.故选B.8.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4
096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C9.函数y=(43)x,x∈N+是()A.增函数B.减函数C.奇函数D.偶函数答案:由正整数指数函数不具有奇偶性,可排除C、D;因为函数y=(43)x,x∈N+的底数43大于1,所以此函数是增函数.故选A.10.随机变量ξ的分布列为k=1、2、3、4,c为常数,则P(<ξ<)的值为()
A.
B.
C.
D.答案:B11.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2512.若向量=(1,λ,2),=(-2,1,1),,夹角的余弦值为,则λ等于()
A.1
B.-1
C.±1
D.2答案:A13.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.14.使关于的不等式有解的实数的最大值是(
)A.B.C.D.答案:D解析:令则的最大值为。选D。还可用Cauchy不等式。15.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.16.已知函数f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故为:7217.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()
A.互斥事件
B.对立事件
C.不是互斥事件
D.前者都不对答案:D18.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤17819.设全集U={1,2,3,4,5},A∩C∪B={1,2},则集合C∪A∩B的所有子集个数最多为()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴当集合C∪A∩B的所有子集个数最多时,集合B中最多有三个元素:3,4,5,且A∩B=?,作出文氏图∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集个数为:23=8.故选D.20.化简下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC21.①附中高一年级聪明的学生;
②直角坐标系中横、纵坐标相等的点;
③不小于3的正整数;
④3的近似值;
考察以上能组成一个集合的是______.答案:因为直角坐标系中横、纵坐标相等的点是确定的,所以②能构成集合;不小于3的正整数是确定的,所以③能构成集合;附中高一年级聪明的学生,不是确定的,原因是没法界定什么样的学生为聪明的,所以①不能构成集合;3的近似值没说明精确到哪一位,所以是不确定的,故④不能构成集合.22.若直线的参数方程为(t为参数),则该直线的斜率为()
A.
B.2
C.1
D.-1答案:D23.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.24.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为25.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..26.用WHILE语句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While
i<=63s=s+2^ii=i+1WendPrint
send27.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x
(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x
(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x
(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x
(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x
(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x
(x≥0)是同一个函数,具有相同的图象,故选B.28.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:429.摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望.答案:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)
答:此次摇奖获得奖金数额的数字期望是395元.30.直线y=33x绕原点逆时针方向旋转30°后,所得直线与圆(x-2)2+y2=3的交点个数是______.答案:∵直线y=33x的斜率为33,∴此直线的倾斜角为30°,∴此直线绕原点逆时针方向旋转30°后倾斜角为60°,∴此直线旋转后的方程为y=3x,由圆(x-2)2+y2=3,得到圆心坐标为(2,0),半径r=3,∵圆心到直线y=3x的距离d=232=3=r,∴该直线与圆相切,则直线与圆(x-2)2+y2=3的交点个数是1.故为:131.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.32.函数y=()|x|的图象是()
A.
B.
C.
D.
答案:B33.若k∈R,则“k>3”是“方程表示双曲线”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:A34.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()
A.
B.
C.
D.答案:B35.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.36.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A37.复数,且A+B=0,则m的值是()
A.
B.
C.-
D.2答案:C38.已知|x|<ch,|y|>c>0.求证:|xy|<h.答案:证明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.39.关于直线a,b,c以及平面M,N,给出下面命题:
①若a∥M,b∥M,则a∥b
②若a∥M,b⊥M,则b⊥a
③若a∥M,b⊥M,且c⊥a,c⊥b,则c⊥M
④若a⊥M,a∥N,则M⊥N,
其中正确命题的个数为()
A.0个
B.1个
C.2个
D.3个答案:C40.下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;
②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;
③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.
其中说法正确的个数为()
A.0个
B.1个
C.2个
D.3个答案:C41.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(
)
A.
B.
C.
D.答案:D42.设是的相反向量,则下列说法一定错误的是()
A.∥
B.与的长度相等
C.是的相反向量
D.与一定不相等答案:D43.某超市推出如下优惠方案:
(1)一次性购物不超过100元不享受优惠;
(2)一次性购物超过100元但不超过300元的一律九折;
(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.
如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.44.方程组的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A45.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()
A.
B.
C.
D.
答案:D46.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.47.若圆x2+y2=9上每个点的横坐标不变,纵坐标缩短为原来的,则所得到的曲线的方程是()
A.
B.
C.
D.答案:C48.(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?
(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.
①求恰有两个区域用红色鲜花的概率;
②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).
答案:(1)根据分步计数原理,摆放鲜花的不同方案有:4×3×2×2=48种(2)①设M表示事件“恰有两个区域用红色鲜花”,如图二,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种;因此,所有基本事件总数为:180+240=420种.(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A53+2A51+A55=420种)它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;因此,事件M包含的基本事件有:36+36=72种.所以,P(M)=72420=635②随机变量ξ的分布列为:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=149.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C50.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.第2卷一.综合题(共50题)1.设集合A={1,2,4},B={2,6},则A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故选B.2.己知集合A={sinα,cosα},则α的取值范围是______.答案:由元素的互异性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范围是{α|α≠kπ+π4,k∈z},故为{α|α≠kπ+π4,k∈z}.3.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为()
A.整数
B.奇数或偶数
C.正整数或负整数
D.自然数或负整数答案:A4.方程组的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A5.已知双曲线的两渐近线方程为y=±32x,一个焦点坐标为(0,-26),
(1)求此双曲线方程;
(2)写出双曲线的准线方程和准线间的距离.答案:(1)由题意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故该双曲线的标准方程为y218-x28=1.(2)由(1)得,双曲线的准线方程为y=±1826x;准线间的距离为2a2c=2×1826=182613.6.若函数,则下列结论正确的是(
)A.,在上是增函数B.,在上是减函数C.,是偶函数D.,是奇函数答案:C解析:对于时有是一个偶函数7.下列在曲线上的点是()
A.
B.
C.
D.答案:D8.某校欲在一块长、短半轴长分别为10米与8米的椭圆形土地中规划一个矩形区域搞绿化,则在此椭圆形土地中可绿化的最大面积为()平方米.
A.80
B.160
C.320
D.160答案:B9.i为虚数单位,复数z=i(1-i),则.z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵复数z=i(1-i)=1+i,则.z=1-i,它在复平面内的对应点的坐标为(1,-1),故.z在复平面内对应的点在第四象限,故选D.10.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)11.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(
)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B12.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=12,⊙O的半径为3,求OA的长.答案:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,设BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).13.设双曲线C:x2a2-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且PA=512PB.求a的值.答案:(I)由C与l相交于两个不同的点,故知方程组x2a2-y2=1x+y=1.有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.双曲线的离心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即离心率e的取值范围为(62,2)∪(2,+∞).(II)设A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1•x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.14.利用斜二测画法能得到的()
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
A.①②
B.①
C.③④
D.①②③④答案:A15.求圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2(r>0)由题意有:b=-4a|a+b+1|2=rb+2a-3•(-1)=-1解之得a=1b=-4r=22∴所求圆的方程为(x-1)2+(y+4)2=816.四名志愿者和两名运动员排成一排照相,要求两名运动员必须站在一起,则不同的排列方法为()A.A44A22B.A55A22C.A55D.A66A22答案:根据题意,要求两名运动员站在一起,所以使用捆绑法,两名运动员站在一起,有A22种情况,将其当做一个元素,与其他四名志愿者全排列,有A55种情况,结合分步计数原理,其不同的排列方法为A55A22种,故选B.17.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.18.将命题“正数a的平方大于零”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.答案:原命题可以写成:若a是正数,则a的平方大于零;逆命题:若a的平方大于零,则a是正数;否命题:若a不是正数,则a的平方不大于零;逆否命题:若a的平方不大于零,则a不是正数.19.
以下四组向量中,互相平行的有()组.
A.一
B.二
C.三
D.四答案:D20.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A.2
B.6
C.4
D.12答案:C21.某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______.答案:∵高一年级有40名学生,在高一年级的学生中抽取了8名,∴每个个体被抽到的概率是
840=15∵高二年级有50名学生,∴要抽取50×15=10名学生,故为:10.22.直线(a+1)x-(2a+5)y-6=0必过一定点,定点的坐标为(
)。答案:(-4,-2)23.给出下列问题:
(1)求面积为1的正三角形的周长;
(2)求键盘所输入的三个数的算术平均数;
(3)求键盘所输入两个数的最小数;
(4)求函数f(x)=2xx2(x≥3)(x<3)当自变量取相应值时的函数值.
其中不需要用条件语句描述的算法的问题有()A.1个B.2个C.3个D.4个答案:(1)求面积为1的正三角形的周长用顺序结构即可,故不需要用条件语句描述;(2)求键盘所输入的三个数的算术平均数用顺序结构即可解决问题,不需要用条件语句描述;(3)求键盘所输入两个数的最小数,由于要作出判断,找出最小数,故本问题的解决要用到条件语句描述;(4)求函数f(x)=2xx2(x≥3)(x<3)当自变量取相应值时的函数值,由于此函数是一个分段函数,所以要用条件结构选择相应的函数解析式,需要用条件语句描述.综上,(3)(4)两个问题要用到条件语句描述,(1),(2)不需要用条件语句描述故选B24.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:161.8或138.225.设S(n)=1n+1n+1+1n+2+1n+3+…+1n2,则()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,当n=2时,n2=4故S(2)=12+13+14故选D26.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10527.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A28.将3封信投入5个邮筒,不同的投法共有()
A.15
种
B.35
种
C.6
种
D.53种答案:D29.已知a,b,c是正实数,且a+b+c=1,则的最小值为(
)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。30.下列各量:①密度
②浮力
③风速
④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.31.为了调查上海市中学生的身体状况,在甲、乙两所学校中各随意抽取了
100名学生,测试引体向上,结果如下表所示:
(1)甲乙两校被测学生引体向上的平均数分别是:甲校______个,乙校______个.
(2)若5个以下(不含5个)为不合格,则甲乙两校的合格率分别为甲校______
乙校______
(3)若15个以上(含15个)为优秀,则甲乙两校中优秀率______校较高(填“甲”或“乙”)
(4)用你所学的统计知识对两所学校学生的身体状况作一个比较.你的结论是______.答案:(1)甲校被测学生引体向上的平均数是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被测学生引体向上的平均数是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中优秀率=9+6100×100%=15%,乙校中优秀率=8+6100×100%=14%,所以甲校较高;(4)虽然合格率相等,但是乙校平均数更高一些,所以乙校更好一些.故为:8.3,9.19,94%,94%,乙校更好一些32.求原点至3x+4y+1=0的距离?答案:由原点坐标为(0,0),得到原点到已知直线的距离d=|3?0+4?0+1|32+42=15.33.过点(-1,3)且平行于直线x-2y+3=0的直线方程为()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A34.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22
×3=33故为:33.35.直线l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐标系中的图形大致是()
A.
B.
C.
D.
答案:C36.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血清的人作比较,结果如下:
未感冒
感冒
合计
试验过
252
248
500
未用过
224
276
500
合计
476
524
1000
根据上表数据,算得Χ2=3.14.以下推断正确的是()
A.血清试验与否和预防感冒有关
B.血清试验与否和预防感冒无关
C.通过是否进行血清试验可以预测是否得感冒
D.通过是否得感冒可以推断是否进行了血清试验答案:A37.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.
(1)求l1的斜率k1的取值范围;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).38.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.39.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D40.b=ac(a,b,c∈R)是a、b、c成等比数列的()A.必要非充分条件B.充分非必要条件C.充要条件D.既非充分又非必要条件答案:当b=a=0时,b=ac推不出a,x,b成等比数列成立,故不充分;当a,b,c成等比数列且a<0,b<0,c<0时,得不到b=ac故不必要.故选:D41.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()
A.
B.
C.
D.答案:D42.已知斜二测画法得到的直观图△A′B′C′是正三角形,画出原三角形的图形.答案:由斜二测法知:B′C′不变,即BC与B′C′重合,O′A′由倾斜45°变为与x轴垂直,并且O′A′的长度变为原来的2倍,得到OA,由此得到原三角形的图形ABC.43.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.44.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B45.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1246.直线(t为参数)的倾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D47.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8348.下列给变量赋值的语句正确的是()
A.5=a
B.a+2=a
C.a=b=4
D.a=2*a答案:D49.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201650.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:223第3卷一.综合题(共50题)1.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:2032.已知向量a表示“向东航行1km”,向量b表示“向北航行3km”,则向量a+b表示()A.向东北方向航行2kmB.向北偏东30°方向航行2kmC.向北偏东60°方向航行2kmD.向东北方向航行(1+3)km答案:如图,作OA=a,OB=b.则OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏东30°方向航行2km.故选B.3.如图,曲线C1、C2、C3分别是函数y=ax、y=bx、y=cx的图象,则()
A.a<b<c
B.a<c<B
C.c<b<a
D.b<c<a
答案:C4.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.5.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是()
A.内切
B.相交
C.外切
D.外离答案:B6.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ7.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是(
)
A.a<-7或a>24
B.a=7或a=24
C.-7<a<24
D.-24<a<7答案:C8.如图,若直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3三个数从小到大的顺序依次是______.答案:由函数的图象可知直线l1,l2,l3的斜率满足k1<0<k3<k2所以k1,k2,k3三个数从小到大的顺序依次是k1,k3,k2故为:k1,k3,k2.9.O、A、B、C为空间四个点,又为空间的一个基底,则()
A.O、A、B、C四点共线
B.O、A、B、C四点共面,但不共线
C.O、A、B、C四点中任意三点不共线
D.O、A、B、C四点不共面答案:D10.抛物线x=14ay2的焦点坐标为()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:抛物线x=14ay2可化为:y2=4ax,它的焦点坐标是(a,0)故选B.11.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,则|a+b|=______;a+b与b的夹角为______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b与b的夹角为θ则0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故为:23,π612.两条直线x-y+6=0与x+y+6=0的夹角为()
A.
B.
C.0
D.答案:D13.已知斜二测画法得到的直观图△A′B′C′是正三角形,画出原三角形的图形.答案:由斜二测法知:B′C′不变,即BC与B′C′重合,O′A′由倾斜45°变为与x轴垂直,并且O′A′的长度变为原来的2倍,得到OA,由此得到原三角形的图形ABC.14.若复数z=a+bi(a、b∈R)是虚数,则a、b应满足的条件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵复数z=a+bi(a、b∈R)是虚数,∴根据虚数的定义得b≠0,a∈R,故选D.15.若点P分向量AB的比为34,则点A分向量BP的比为()A.-34B.34C.-73D.73答案:由题意可得APPB=|AP||PB|=34,故
A分BP的比为BAAP=-|BA||AP|=-4+33=-73,故选C.16.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验()
A.H0:男性喜欢参加体育活动
B.H0:女性不喜欢参加体育活动
C.H0:喜欢参加体育活动与性别有关
D.H0:喜欢参加体育活动与性别无关答案:D17.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.18.设是的相反向量,则下列说法一定错误的是()
A.∥
B.与的长度相等
C.是的相反向量
D.与一定不相等答案:D19.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B20.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:设A(x1,y1),B(x2,y2),根据抛物线定义,x1+x2+p=8,∵AB的中点到y轴的距离是2,∴x1+x22=2,∴p=4;∴抛物线方程为y2=8x故选B21.设O是正△ABC的中心,则向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共线向量
D.共起点的向量答案:B22.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-223.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.24.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是()A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案:若l∥α,则a•n=0.而A中a•n=-2,B中a•n=1+5=6,C中a•n=-1,只有D选项中a•n=-3+3=0.故选D.25.已知a,b为正数,求证:≥.答案:证明略解析:1:∵a>0,b>0,∴≥,≥,两式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲证≥,即证≥,只要证
≥,只要证
≥,即证
≥,只要证a3+b3≥ab(a+b),只要证a2+b2-ab≥ab,即证(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名师指引】当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路.“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用.这两种数学方法是高考考查的重要数学思维方法.26.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三点共线,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故为:3;227.已知直线l过点P(1,0,-1),平行于向量=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D28.顶点在原点,焦点是(0,5)的抛物线方程是()
A.x2=20y
B.y2=20x
C.y2=x
D.x2=y答案:A29.集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为()A.2B.3C.4D.无数个答案:由题意,两腰为2,底角为30°;两腰为2,顶角为30°;底边为2,底角为30°;底边为2,顶角为30°.∴共4个元素,故选C.30.设,求证:。答案:证明略解析:证明:因为,所以有。又,故有。…………10分于是有得证。
…………20分31.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()
A.40
B.30
C.20
D.12答案:A32.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速v(km/h)满足下列关系:s=(n为常数,且n∈N),做了两次刹车试验,有关试验数据如图所示,其中,
(1)求n的值;
(2)要使刹车距离不超过12.6m,则行驶的最大速度是多少?答案:解:(1)依题意得,解得,又n∈N,所以n=6;(2)s=,因为v≥0,所以0≤v≤60,即行驶的最大速度为60km/h。33.赋值语句M=M+3表示的意义()
A.将M的值赋给M+3
B.将M的值加3后再赋给M
C.M和M+3的值相等
D.以上说法都不对答案:B34.已知α,β表示两个不同的平面,m为平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医理论下的现代时尚-健康养生服饰设计的趋势分析
- 以防伪造为目的的区块链电子投票研究
- 创新医疗健康管理打造个性化健康管理新模式
- 真空节能玻璃企业县域市场拓展与下沉战略研究报告
- 开沟机企业县域市场拓展与下沉战略研究报告
- 往复式给料机企业数字化转型与智慧升级战略研究报告
- 窗式空调器企业县域市场拓展与下沉战略研究报告
- 吊环(钻井工具)企业县域市场拓展与下沉战略研究报告
- 无溶剂涂料企业ESG实践与创新战略研究报告
- 普通电影摄影机企业ESG实践与创新战略研究报告
- DZ∕T 0148-2014 水文水井地质钻探规程(正式版)
- 电缆沟工程量计算表(土建)
- 初中数学课堂教学中应重视学生阅读理解能力的培养
- 优秀教案:接触器联锁正反转控制线路的检修与测试
- 高二化学烃的衍生物.ppt课件
- 中国城市规划设计研究院交通评估收费标准
- 配件来源及报价明细表
- IQC供应商品质管理看板
- 钢结构安装专项方案(电梯井)
- 生物工程设备教案
- 《三国演义》课外阅读指导课说课
评论
0/150
提交评论