版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年安徽矿业职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.2.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.
(1)求l1的斜率k1的取值范围;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).3.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C4.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的答案:(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以(4)是错误的.故选C.5.在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(AB-tOC)•OC=0,求t的值.答案:(1)(方法一)由题设知AB=(3,5),AC=(-1,1),则AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的两条对角线的长分别为42、210.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=42、AD=210;(2)由题设知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)•OC=0,得:(3+2t,5+t)•(-2,-1)=0,从而5t=-11,所以t=-115.或者:AB•OC=tOC2,AB=(3,5),t=AB•OC|OC|2=-1156.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.7.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).8.如图,AC、BC分别是直角三角形ABC的两条直角边,且AC=3,BC=4,以AC为直径作圆与斜边AB交于D,则BD=______.答案:连CD,在Rt△ABC中,因为AC、BC的长分别为3cm、4cm,所以AB=5cm,∵AC为直径,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故为:1659.若不等式的解集,则实数=___________.答案:-410.不等式﹣2x+1>0的解集是(
).答案:{x|x<}11.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件答案:C12.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线
BD′上,∠PDA=60°.
(1)求DP与CC′所成角的大小;
(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.13.若有以下说法:
①相等向量的模相等;
②若a和b都是单位向量,则a=b;
③对于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,则a∥c.
其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A14.阅读如图所示的程序框,若输入的n是100,则输出的变量S的值是()A.5051B.5050C.5049D.5048答案:根据流程图所示的顺序,该程序的作用是累加并输出S=100+99+98+…+2,∵100+99+98+…+2=5049,故选C.15.设a=0.7,b=0.8,c=log30.7,则()
A.c<b<a
B.c<a<b
C.a<b<c
D.b<a<c答案:B16.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为17.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四18.若直线x=1的倾斜角为α,则α等于
______.答案:因为直线x=1与y轴平行,所以直线x=1的倾斜角为90°.故为:90°19.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.20.设有三个命题:“①0<12<1.②函数f(x)=log
12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log
12x是减函数.其“小前提”是①.故为:①.21.(x+2y)4展开式中各项的系数和为______.答案:令x=y=1,可得(1+2)4=81故为:81.22.设点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),则OA•BC=______.答案:因为点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以OA=(1,-2,3),BC=(2,0,-6),OA•BC=(1,-2,3)•(2,0,-6)=2-18=-16.故为:-16.23.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是______.答案:∵圆过原点,圆心在x轴的负半轴上,∴圆心的横坐标的相反数等于圆的半径,又∵半径r=2,∴圆心坐标为(-2,0),由此可得所求圆的方程为(x+2)2+y2=2.故为:(x+2)2+y2=224.设a,b,c都是正数,求证:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:证明略解析:证明
(1)∵a,b,c都是正数,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,当且仅当a=b=c时,等号成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,当且仅当a=b=c时,等号成立.25.已知正方形的边长为2,AB=a,BC=b,AC=c,则|a+b+c|=()A.0B.2C.2D.4答案:由题意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因为正方形的边长为2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故选D.26.某科目考试有30道题每小题有三个选项,每题2分,另有20道题,每题有四个选项每题3分,每题只有一个答案,某人随机去选答案,则平均能得______分.答案:由题意,30道题每小题有三个选项,每题2分,每题只有一个,某人随机去选,则可得2×30×13=20分;20道题,每题有四个选项每题3分,每题只有一个,某人随机去选,则可得3×20×14=15分故平均能得35分故为:35分.27.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:128.在直角坐标系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲线的解析式是:______.答案:由题意并根据cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故为(x+1)2+(y-2)2=9.解析:在直角坐标系中,29.若A∩B=A∪B,则A______B.答案:设有集合W=A∪B=B∩C,根据并集的性质,W=A∪B?A?W,B?W,根据交集的性质,W=A∩B?W?A,W?B由集合子集的性质,A=B=W,故为:=.30.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的焦距为2c,以O为圆心,a为半径作圆M,若过P(a2c,0)作圆M的两条切线相互垂直,则椭圆的离心率为______.答案:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故为22.31.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.32.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.33.已知点A(-3,0),B(3,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线
y=x-2交于D、E两点,求线段DE的中点坐标及其弦长DE.答案:∵|CB|-|CA|=2<23=|AB|,∴点C的轨迹是以A、B为焦点的双曲线,2a=2,2c=23,∴a=1,c=3,∴b=2,∴点C的轨迹方程为x2-y22=1.把直线
y=x-2代入x2-y22=1化简可得x2+4x-6=0,△=16-4(-6)=40>0,设D、E两点的坐标分别为(x1,y1
)、(x2,y2),∴x1+x2=-4,x1•x2=-6.∴线段DE的中点坐标为M(-2,4),DE=1+1•|x1-x2|=2•(x1
+x2)2-4x1
•x2
=216-4(-6)=45.34.用0,1,2,3组成没有重复数字的四位数,其中奇数有()
A.8个
B.10个
C.18个
D.24个答案:A35.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,则|a+b|=______;a+b与b的夹角为______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b与b的夹角为θ则0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故为:23,π636.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点的个数为(
)
A.0
B.1
C.2
D.不能确定答案:A37.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.答案:对于⊙O上任意一点A′,连AA′,作AA′的垂直平分线MN,连OA′,交MN于点P,则OP+PA=OA′=R.由于点A在⊙O内,故OA=a<R.从而当点A′取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA′>OA′,故点Q在椭圆C外,即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A′,则S在AA′的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1°
当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2°
当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S′),取过S′的半径OD,则由点S′在椭圆C外,故OS′+S′A≥R(椭圆的长轴).即S′A≥S′D.于是D在⊙S′内或上,即⊙S′与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.38.一组数据12,15,24,25,31,31,36,36,37,39,44,49,50的中位数是()
A.31
B.36
C.35
D.34答案:B39.在平面直角坐标系内第二象限的点组成的集合为______.答案:∵平面直角坐标系内第二象限的点,横坐标小于0,纵坐标大于0,∴在平面直角坐标系内第二象限的点组成的集合为{(x,y)|x<0且y>0},故为:{(x,y)|x<0且y>0}.40.引入复数后,数系的结构图为()
A.
B.
C.
D.
答案:A41.设a1,a2,…,a2n+1均为整数,性质P为:对a1,a2,…,a2n+1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等求证:a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.答案:证明:①当a1,a2,…,a2n+1全部相等时,从中任意2n个数,将其分为两组,每组n个数,两组所有元素的和相等,故性质P成立.②下面证明:当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.反证法:假设a1,a2,…,a2n+1不全部相等,则其中至少有一个整数和其它的整数不同,不妨设此数为a1,若a1在取出的2n个数中,将其分为两组,每组n个数,则a1在的那个组所有元素的和与另一个组所有元素的和不相等,这与性质P矛盾,故假设不成立,所以,当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.综上,a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.42.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.43.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根据样本的频率分布估计,大于或等于31.5的数据约占()A.211B.13C.12D.23答案:根据所给的数据的分组和各组的频数知道,大于或等于31.5的数据有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本组数据共有66个,∴大于或等于31.5的数据约占2266=13,故选B44.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若AD=23,AE=6,求EC的长.答案:证明:(Ⅰ)取BD的中点O,连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.
…(5分)(Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.
…(10分)45.把方程化为以参数的参数方程是(
)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制46.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:847.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.48.已知直线过点A(2,0),且平行于y轴,方程:|x|=2,则(
)
A.l是方程|x|=2的曲线
B.|x|=2是l的方程
C.l上每一点的坐标都是方程|x|=2的解
D.以方程|x|=2的解(x,y)为坐标的点都在l上答案:C49.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1450.下列函数图象中,正确的是()
A.
B.
C.
D.
答案:C第2卷一.综合题(共50题)1.已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.答案:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d=(5-1)2+(6-3)2=5,两圆的半径之和为11+61-m,由两圆的半径之和为11+61-m=5,可得m=25+1011.(2)由两圆的圆心距d=(5-1)2+(6-3)2=5等于两圆的半径之差为|11-61-m|,即|11-61-m|=5,可得
11-61-m=5(舍去),或
11-61-m=-5,解得m=25-1011.(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0.第一个圆的圆心(1,3)到公共弦所在的直线的距离为d=|4+9-23|5=2,可得弦长为211-4=27.2.以数集A={a,b,c,d}中的四个元素为边长的四边形只能是()A.平行四边形B.矩形C.菱形D.梯形答案:∵数集A={a,b,c,d}中的四个元素互不相同,∴以数集A={a,b,c,d}中的四个元素为边长的四边形,四条边不相等∴四边形只可能是梯形故选D.3.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:设A(x1,y1),B(x2,y2),根据抛物线定义,x1+x2+p=8,∵AB的中点到y轴的距离是2,∴x1+x22=2,∴p=4;∴抛物线方程为y2=8x故选B4.下列几种说法正确的个数是()
①相等的角在直观图中对应的角仍然相等;
②相等的线段在直观图中对应的线段仍然相等;
③平行的线段在直观图中对应的线段仍然平行;
④线段的中点在直观图中仍然是线段的中点.
A.1
B.2
C.3
D.4答案:B5.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故为100.6.下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;
②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;
③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.
其中说法正确的个数为()
A.0个
B.1个
C.2个
D.3个答案:C7.“a>1”是“1a<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由1a<1得:当a>0时,有1<a,即a>1;当a<0时,不等式恒成立.所以1a<1?a>1或a<0从而a>1是1a<1的充分不必要条件.故应选:A8.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.9.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.10.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)11.若直线过点(1,2),(),则此直线的倾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C12.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.13.满足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函数可以是f(x)=______.答案:若函数为对数函数,不妨令f(x)=logax则f(xy)=loga(xy)=logax+logay=f(x)+f(y)满足条件又∵f(3)=2∴loga3=2解得a=3故f(x)=log3x故为:log3x14.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(
)
答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.15.不等式ax2+bx+2>0的解集是(-,),则a+b的值是()
A.10
B.-10
C.14
D.-14答案:D16.从一批羽毛球产品中任取一个,质量小于4.8
g的概率是0.3,质量不小于4.85
g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B17.i为虚数单位,复数z=i(1-i),则.z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵复数z=i(1-i)=1+i,则.z=1-i,它在复平面内的对应点的坐标为(1,-1),故.z在复平面内对应的点在第四象限,故选D.18.直线y=2x+1的参数方程是()
A.(t为参数)
B.(t为参数)
C.(t为参数)
D.(θ为参数)
答案:B19.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.20.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;
(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;
(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.21.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是(
)
A.
B.
C.
D.答案:B22.(理)在直角坐标系中,圆C的参数方程是x=2cosθy=2+2sinθ(θ为参数),以原点为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为______.答案:∵直角坐标系中,圆C的参数方程是x=2cosθy=2+2sinθ(θ为参数),∴x2+(y-2)2=4,∵以原点为极点,以x轴正半轴为极轴建立极坐标系,∴圆心坐标(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圆C的圆心极坐标为(2,π2),故为:(2,π2).23.经过点P(4,-2)的抛物线的标准方程为()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C24.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(
)
A.
B.
C.
D.答案:B25.已知点M在z轴上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,则点M的坐标是
______.答案:∵点M在z轴上,∴设点M的坐标为(0,0,z)又|MA|=|MB|,由空间两点间的距离公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故点M的坐标是(0,0,-3).故为:(0,0,-3).26.对赋值语句的描述正确的是(
)
①可以给变量提供初值
②将表达式的值赋给变量
③可以给一个变量重复赋值
④不能给同一变量重复赋值A.①②③B.①②C.②③④D.①②④答案:A解析:试题分析:在表述一个算法时,经常要引入变量,并赋给该变量一个值。用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句。赋值语句的一般格式是:变量名=表达式其中“=”为赋值号.故选A。点评:简单题,赋值语句的一般格式是:变量名=表达式其中"="为赋值号。27.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.
答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:108828.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是()
A.-
B.-6
C.6
D.答案:C29.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.30.求证:三个两两垂直的平面的交线两两垂直.答案:设三个互相垂直的平面分别为α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三个平面的公共点为O,如图所示:在平面γ内,除点O外,任意取一点M,且点M不在这三个平面中的任何一个平面内,过点M作MN⊥c,MP⊥b,M、P为垂足,则有平面和平面垂直的性质可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.
再由b、c在平面γ内,可得a⊥b,a⊥c.同理可证,c⊥b,c⊥a,从而证得a、b、c互相垂直.31.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是______
(1)有95%的把握认为“这种血清能起到预防感冒的作用”
(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒
(3)这种血清预防感冒的有效率为95%
(4)这种血清预防感冒的有效率为5%答案:查对临界值表知P(Χ2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”950/0仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能.故为:(1).32.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)答案:A33.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°34.将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()
A.6种
B.12种
C.18种
D.24种
答案:A35.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量==415㎏,方差是=794,=958,那么这两个水稻品种中产量比较稳定的是()
A.甲
B.乙
C.甲、乙一样稳定
D.无法确定答案:A36.复数1+i(i为虚数单位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故选A.37.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.38.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()
A.-1
B.0
C.2
D.-2答案:B39.掷一颗均匀的骰子,若随机事件A表示“出现奇数点”,则A的对立事件B表示______.答案:掷一颗均匀的骰子,结果只有2种:出现奇数点、出现偶数点.若随机事件A表示“出现奇数点”,则A的对立事件B表示:“出现偶数点”,故为出现偶数点.40.
已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B41.椭圆x=3cosθy=4sinθ的离心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其离心率e=ca=74.故为:74.42.利用计算机随机模拟方法计算y=x2与y=4所围成的区域Ω的面积时,可以先运行以下算法步骤:
第一步:利用计算机产生两个在[0,1]区间内的均匀随机数a,b;
第二步:对随机数a,b实施变换:答案:根据题意可得,点落在y=x2与y=4所围成的区域Ω的点的概率是100-34100=66100,矩形的面积为4×4=16,阴影部分的面积为S,则有S16=66100,∴S=10.56.故为:10.56.43.若直线按向量平移得到直线,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有无数个答案:D解析:设平移向量,直线平移之后的解析式为,即,所以,满足的有无数多个.44.设向量a,b,c满足a+b+c=0,a⊥b,且a,b的模分别为s,t,其中s=a1=1,t=a3,an+1=nan,则c的模为______.答案:∵向量a,b,c满足a+b+c=0,a⊥b,∴向量a,b,c构成一个直角三角形,如图∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故为:5.45.不等式:>0的解集为A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集为(-2,1)∪(2,+∞),选C。46.命题“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.对任意x∈Z使x2+2x+m≤0
D.对任意x∈Z使x2+2x+m>0答案:D47.已知直线l的斜率为k=-1,经过点M0(2,-1),点M在直线上,以M0M的数量t为参数,则直线l的参数方程为______.答案:∵直线l经过点M0(2,-1),斜率为k=-1,倾斜角为3π4,∴直线l的参数方程为x=2+tcos3π4y=-1+tsin3π4
(t为参数);即为x=2-22ty=-1+22t(t为参数).故为:x=2-22ty=-1+22t(t为参数).48.设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(1)求点p的轨迹方程;
(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以动点P的轨迹M是以点E(-1,0),F(1,0)为焦点,长轴长为4的椭圆.因为c=1,a=2,则b2=a2-c2=3.故动点P的轨迹M方程是x24+y23=1(2)设直线BC的方程x=my+1与(1)中的椭圆方程x24+y23=1联立消去x可得(3m2+4)y2+6my-9=0,设点B(x1,y1),C(x2,y2)则y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4点A到直线BC的距离d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面积最大值为9249.在同一坐标系中,y=ax与y=a+x表示正确的是()A.
B.
C.
D.
答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.50.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.第3卷一.综合题(共50题)1.下列命题中正确的是()
A.若,则
B.若,则
.若,则
D.若,则答案:C2.如图,⊙O与⊙O′交于
A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.无法确定
答案:B3.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).
(I)求曲线E的方程;
(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;
(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.4.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的()A.原命题B.逆命题C.否命题D.逆否命题答案:设命题p为“若k,则s”;则其否命题q是“若¬k,则¬s”;∴命题q的逆命题r是“若¬s,则¬k”,而p的逆命题为“若s,则k”,故r是p的逆命题的否命题.故选C.5.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B6.已知直线l的参数方程为x=3+12ty=7+32t(t为参数),曲线C的参数方程为x=4cosθy=4sinθ(θ为参数).
(I)将曲线C的参数方程转化为普通方程;
(II)若直线l与曲线C相交于A、B两点,试求线段AB的长.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圆的方程为x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴线段AB的长为|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.7.直线x=2-12ty=-1+12t(t为参数)被圆x2+y2=4截得的弦长为______.答案:∵直线x=2-12ty=-1+12t(t为参数)∴直线的普通方程为x+y-1=0圆心到直线的距离为d=12=22,l=24-(22)2=14,故为:14.8.设和为不共线的向量,若2-3与k+6(k∈R)共线,则k的值为()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B9.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.10.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].11.如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.
A.40
B.50
C.70
D.80
答案:C12.证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.答案:证明见解析:建立如图所示的直角坐标系.设,,其中,.则直线的方程为,直线的方程为.设底边上任意一点为,则到的距离;到的距离;到的距离.因为,所以,结论成立.13.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a不能被3整除答案:B14.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C15.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有______种(用数字作答).答案:根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有C96=84种不同方法.所以名额分配的方法共有84种.16.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2
又M(1,1)为线段AB的中点∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在17.如图,椭圆C2x2a2+
y2b2=1的焦点为F1,F2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n为过原点的直线,l是与n垂直相交与点P,与椭圆相交于A,B两点的直线|op|=1,是否存在上述直线l使OA•OB=0成立?若存在,求出直线l的方程;并说出;若不存在,请说明理由.答案:(Ⅰ)由题意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴椭圆C的方程为x24+y33=1.(Ⅱ)设A、B两点的坐标分别为A(x1,y1),B(x2,y2),假设使OA•OB=0成立的直线l存在.(i)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点,且|OP|=1得|m|1+
k2=1,即m2=k2+1,由OA•OB=0得x1x2+y1y2=0,将y=kx+m代入椭圆得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化简得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③将m2=1+k2代入③并化简得-5(k2+1)=0矛盾.即此时直线l不存在.(ii)当l垂直于x轴时,满足|OP|=1的直线l的方程为x=1或x=-1,由A、B两点的坐标为(1,32),(1,-32)或(-1,32),(-1,-32).当x=1时,OA•OB=(1,32)•
(1,-32)=-54≠0.当x=-1时,OA•OB=(-1,32)•
(-1,-32)=-54≠0.∴此时直线l也不存在.综上所述,使OA•OB=0成立的直线l不成立.18.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:219.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.20.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中可能成立的关系式有()
A.①②③
B.①②⑤
C.①③⑤
D.③④⑤答案:B21.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.22.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(
)
A.4
B.-4
C.-5
D.6答案:A23.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.答案:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2.(Ⅰ)不需要补考就获得证书的事件为A1?B1,注意到A1与B1相互独立,根据相互独立事件同时发生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即该考生参加考试次数的数学期望为83.24.若直线
3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()
A.-1
B.1
C.3
D.-3答案:B25.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n=______.答案:∵某校有老师200人,男学生1
200人,女学生1
000人.∴学校共有200+1200+1000人由题意知801000=n200+1200+1000,∴n=192.故为:19226.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()
A.3,2
B.2,3
C.2,30
D.30,2答案:A27.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下四个结论:
(1)f(1,2)=3;
(2)f(1,5)=9;
(3)f(5,1)=16;
(4)f(5,6)=26.其中正确的为______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正确(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正确(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正确(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正确故为(1)(2)(3)(4)28.为了调查上海市中学生的身体状况,在甲、乙两所学校中各随意抽取了
100名学生,测试引体向上,结果如下表所示:
(1)甲乙两校被测学生引体向上的平均数分别是:甲校______个,乙校______个.
(2)若5个以下(不含5个)为不合格,则甲乙两校的合格率分别为甲校______
乙校______
(3)若15个以上(含15个)为优秀,则甲乙两校中优秀率______校较高(填“甲”或“乙”)
(4)用你所学的统计知识对两所学校学生的身体状况作一个比较.你的结论是______.答案:(1)甲校被测学生引体向上的平均数是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被测学生引体向上的平均数是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中优秀率=9+6100×100%=15%,乙校中优秀率=8+6100×100%=14%,所以甲校较高;(4)虽然合格率相等,但是乙校平均数更高一些,所以乙校更好一些.故为:8.3,9.19,94%,94%,乙校更好一些29.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有2处错误,请找出错误并予以更正.答案:(12分)(1)程序框图如图:(两者选其一即可,不唯一)(2)①直到型循环结构是直到满足条件退出循环,While错误,应改成LOOP
UNTIL;②根据循环次数可知输出n+1
应改为输出n;30.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π31.如图:已知圆上的弧
AC=
BD,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)32.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,2,当ξ=0时,即A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时,ξ=3时的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故为:23.33.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.
(1)求甲、乙两种果树至少有一种果树成苗的概率;
(2)求恰好有一种果树能培育成苗且移栽成活的概率.答案:(1)甲、乙两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度文化旅游项目开发与合作合同5篇
- 2024年度离婚案:女方对房产的独立拥有协议3篇
- 2024年度科研技术合作合同3篇
- 《盈利能力分析技术》课件
- 2022-2023学年上海十中高二(上)期末地理试卷
- 《MBA经济学必读》课件
- 2024年度离婚后房产过户协议
- 2023年山西省太原五中高考地理一模试卷
- 2024年度设备维修合同维修项目与质量保证2篇
- 2024年度技术服务合同:乙方向甲方提供技术服务的详细条款
- 长春工程学院《西方文明史》2023-2024学年第一学期期末试卷
- 北京市五十六中学2024-2025学年七年级上学期期中数学试题
- 人教版新目标初中英语七年级下册《Unit 2 What time do you go to school》单元作业设计
- 8.1 国家好 大家才会好(教学课件)-八年级道德与法治上册同步备课系列(统编版)
- 管理学基础知识考试题库(附含答案)
- 2024年辅警招考时事政治考题及答案(168题)
- 2024年“国际档案日”档案知识竞赛题目和答案
- 2023-2024学年广东省深圳市福田区八年级(上)期末英语试卷
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 英语 含解析
- 2024-2030年中国保理行业深度调研及发展战略建议报告
- 公共场所反恐演练预案
评论
0/150
提交评论