2023年四川体育职业学院高职单招(数学)试题库含答案解析_第1页
2023年四川体育职业学院高职单招(数学)试题库含答案解析_第2页
2023年四川体育职业学院高职单招(数学)试题库含答案解析_第3页
2023年四川体育职业学院高职单招(数学)试题库含答案解析_第4页
2023年四川体育职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年四川体育职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.2.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=13.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X,则“X>4”表示试验的结果为()

A.第一枚为5点,第二枚为1点

B.第一枚大于4点,第二枚也大于4点

C.第一枚为6点,第二枚为1点

D.第一枚为4点,第二枚为1点答案:C4.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故为:i.5.用“斜二测画法”作正三角形ABC的水平放置的直观图△A′B′C′,则△A′B′C′与△ABC的面积之比为______.答案:设正三角形的标出为:1,正三角形的高为:32,所以正三角形的面积为:34;按照“斜二测画法”画法,△A′B′C′的面积是:12×1×34×sin45°=616;所以△A′B′C′与△ABC的面积之比为:61634=24,故为:246.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.7.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.

B.

C.

D.

答案:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.8.若数据x1,x2,…,xn的方差为3,数据ax1+b,ax2+b,…,axn+b的标准差为23,则实数a的值为______.答案:数据ax1+b,ax2+b,…,axn+b的方差是数据x1,x2,…,xn的方差的a2倍;则数据ax1+b,ax2+b,…,axn+b的方差为3a2,标准差为3a2=23解得a=±2故为:±29.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.10.已知:关于x的方程2x2+kx-1=0

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是-1,求另一个根及k值.答案:(1)证明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.(2)设2x2+kx-1=0的另一个根为x,则x-1=-k2,(-1)•x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一个根为12,k的值为1.11.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故选B.12.已知点P是以F1、F2为左、右焦点的双曲线(a>0,b>0)左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为()

A.

B.

C.

D.答案:D13.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是

______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.14.直线y=2的倾斜角和斜率分别是()A.90°,斜率不存在B.90°,斜率为0C.180°,斜率为0D.0°,斜率为0答案:由题意,直线y=2的倾斜角是0°,斜率为0故选D.15.椭圆x225+y29=1的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为______.答案:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故为20.16.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.

求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)17.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.

(I)求直线的普通方程和圆的直角坐标方程;

(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)18.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.19.已知直线l:x=2+ty=1-at(t为参数),与椭圆x2+4y2=16交于A、B两点.

(1)若A,B的中点为P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.答案:(1)直线l:x=2+ty=1-at代入椭圆方程,整理得(4a2+1)t2-4(2a-1)t-8=0设A、B对应的参数分别为t1、t2,则t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中点为P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一个三等分点,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,⇒t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直线l的直角坐标方程y-1=4±76(x-2).20.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.21.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.22.下列各组向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:选项A中,b=-2a⇒a∥b;选项B中有:d=-3c⇒d∥c,选项C中零向量与任意向量平行,选项D,事实上不存在任何一个实数λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故应选:D23.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数

C.a,b,c都是奇数

D.a,b,c都是偶数答案:B24.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.25.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()

A.105°

B.115°

C.120°

D.125°

答案:B26.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;

⑤a=b.其中可能成立的关系式有()

A.①②③

B.①②⑤

C.①③⑤

D.③④⑤答案:B27.是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且则△OAB的面积等于()

A.15

B.10

C.7.5

D.5答案:D28.若向量=(1,λ,2),=(2,-1,2)且与的夹角余弦为,则λ等于(

A.2

B.-2

C.-2或

D.2或答案:C29.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()

A.50°

B.60°

C.100°

D.120°

答案:C30.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221331.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C32.某射击运动员在四次射击中分别打出了9,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是______.答案:∵四次射击中分别打出了10,x,10,8环,这组数据的平均数为9,∴9+x+10+84,∴x=9,∴这组数据的方差是14(00+1+1)=12,故为:1233.若F1、F2是椭圆x24+y2=1的左、右两个焦点,M是椭圆上的动点,则1|MF1|+1|MF2|的最小值为______.答案:∵F1、F2是椭圆x24+y2=1的左、右两个焦点,M是椭圆上的动点,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值为a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故为:1.34.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).35.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.36.在极坐标系中,点A(2,π2)关于直线l:ρcosθ=1的对称点的一个极坐标为______.答案:在直角坐标系中,A(0,2),直线l:x=1,A关于直线l的对称点B(2,2).由于|OB|=22,OB直线的倾斜角等于π4,且点B在第一象限,故B的极坐标为(22,π4),故为

(22,π4).37.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).38.一个凸多面体的各个面都是四边形,它的顶点数是16,则它的面数为()

A.14

B.7

C.15

D.不能确定答案:A39.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.40.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()

A.0.4

B.1.2

C.0.43

D.0.6答案:B41.若点P分向量AB的比为34,则点A分向量BP的比为()A.-34B.34C.-73D.73答案:由题意可得APPB=|AP||PB|=34,故

A分BP的比为BAAP=-|BA||AP|=-4+33=-73,故选C.42.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.43.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()

A.±

B.±2

C.±2

D.±4答案:B44.若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则p的值为()

A.2

B.4

C.8

D.4答案:C45.下列四组函数,表示同一函数的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函数必然具有相同的定义域、值域、对应关系,A中的2个函数的值域不同,B中的2个函数的定义域不同,C中的2个函数的对应关系不同,只有D的2个函数的定义域、值域、对应关系完全相同,故选D.46.袋中有4个形状大小一样的球,编号分别为1,2,3,4,从中任取2个球,则这2个球的编号之和为偶数的概率为()A.16B.23C.12D.13答案:根据题意,从4个球中取出2个,其编号的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;其中编号之和为偶数的有(1,3),(2,4),共2种;则2个球的编号之和为偶数的概率P=26=13;故选D.47.过点P(2,3)且以a=(1,3)为方向向量的直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得a=(1,3)与a=(1,k)互相平行∴11=k3⇒k=3,所以直线l的点斜式方程为:y-3=3(x-2)化成一般式:3x-y-3=0故为:3x-y-3=0.48.已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.

(1)求证:M点的轨迹是抛物线,并求出其方程;

(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:

1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?答案:(1)证明:由题意可知:动点M到定点F(1,0)的距离等于M到定直线x=-1的距离根据抛物线的定义可知,M的轨迹是抛物线所以抛物线方程为:y2=4x(2)(i)设A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA•OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直线AB过定点M(1,0),(ii)设p(x0,y0)设AB的方程为y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分别是A,B的纵坐标∵AP⊥PB∴kmax•kmin=-1即y1-y0x1-x0•y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4•y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直线PQ的方程为x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定过点(x0+2,-y0)49.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()

A.是圆心

B.在圆上

C.在圆内

D.在圆外答案:C50.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()

A.0

B.1

C.2

D.4答案:B第2卷一.综合题(共50题)1.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是()A.(7+2)

cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的表面积S表面=2S底+S侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故选A.2.定义在R上的二次函数y=f(x)在(0,2)上单调递减,其图象关于直线x=2对称,则下列式子可以成立的是()

A.

B.

C.

D.答案:D3.与向量a=(12,5)平行的单位向量为()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:设与向量a=(12,5)平行的单位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故选C.4.如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为()A.33πB.36πC.23πD.3π答案:由已知中“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,我们可以判断出底面的半径为1,母线长为2,则半圆锥的高为3故V=13×12×π×3=36π故选B5.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:x=22t+1y=22t,求直线l与曲线C相交所成的弦的弦长.答案:曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为x2+y2-4x=0,即(x-2)2+y2=4直线l的参数方程x=22t+1y=22t,化为普通方程为x-y-1=0,曲线C的圆心(2,0)到直线l的距离为12=22所以直线l与曲线C相交所成的弦的弦长24-12=14.6.Rt△ABC中,CD是斜边AB上的高,该图中只有x个三角形与△ABC相似,则x的值为()A.1B.2C.3D.4答案:∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD△ACD∽CBD△ABC∽CBD所以有三对相似三角形,该图中只有2个三角形与△ABC相似.故选B.7.如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()

A.y2=x

B.y2=9x

C.y2=x

D.y2=3x

答案:D8.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.9.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(

)答案:﹣110.若复数(1+bi)•(2-i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-12C.12D.2答案:由(1+bi)•(2-i)=2+b+(2b-1)i是纯虚数,则2+b=02b-1≠0,解得b=-2.故选A.11.利用斜二测画法能得到的()

①三角形的直观图是三角形;

②平行四边形的直观图是平行四边形;

③正方形的直观图是正方形;

④菱形的直观图是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A12.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=

AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.13.椭圆焦点在x轴,离心率为32,直线y=1-x与椭圆交于M,N两点,满足OM⊥ON,求椭圆方程.答案:设椭圆方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴椭圆方程为x24b2+y2b2=1.把直线方程代入化简得5x2-8x+4-4b2=0.设M(x1,y1)、N(x2,y2),则x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴椭圆方程为25x2+85y2=1.14.极坐标方程ρcos2θ=0表示的曲线为()

A.极点

B.极轴

C.一条直线

D.两条相交直线答案:D15.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如图,则a、b、c、d、1之间从小到大的顺序是______.答案:作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<1<d<c故为:b,a,1,d,c16.若非零向量满足,则()

A.

B.

C.

D.答案:C17.直线被圆x2+y2=9截得的弦长为(

A.

B.

C.

D.答案:B18.下列特殊命题中假命题的个数是()

①有的实数是无限不循环小数;

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B19.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且AF=λFB(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.

(I)证明FM.AB为定值;

(II)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.答案:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2-4kx-4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲线4y=x2上任意一点斜率为y'=x2,则易得切线AM,BM方程分别为y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)从而,FM=(x1+x22,-2),AB(x2-x1,y2-y1)FM•AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且当λ=1时,S取得最小值4.20.比较大小:a=0.20.5,b=0.50.2,则()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A21.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.22.四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.答案:设火讯点的坐标P(x,y),由于观察到的距离相差为6,点P在双曲线上,由于离A近,所以点P在双曲线x29-y216=1(x≥3)上;由于离C近,所以点P在双曲线Y29-X216=1(Y≥3)上;由这两个方程解得:x=1277y=1277答:火讯点的坐标为:(1277,1277).23.由棱长为a的正方体的每个面向外侧作侧棱为a的正四棱锥,以这些棱锥的顶点为顶点的凸多面体的全面积是______.答案:由棱长为a的正方体的每个面向外侧作侧棱为a的正四棱锥,共可作6个,得到6个顶点,围成一个正八面体.所作的正四棱锥的高为h′=2a2,正八面体相对的两顶点的距离应为2h′+a=1+2a正八面体的棱长x满足2x=(1+2)a,x=(1+22)a,每个侧面的面积为34x2=34×(1+22)2a2=33+268a2,全面积是8×33+268=33+26故为:(33+26)a224.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C25.下面四个结论:

①偶函数的图象一定与y轴相交;

②奇函数的图象一定通过原点;

③偶函数的图象关于y轴对称;

④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),

其中正确命题的个数是()A.1B.2C.3D.4答案:偶函数的图象关于y轴对称,但不一定与y轴相交,因此①错误,③正确;奇函数的图象关于原点对称,但不一定经过原点,只有在原点处有定义才通过原点,因此②错误;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,只要定义域关于原点对称即可,因此④错误.故选A.26.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.27.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.28.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)

(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.

(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).29.某公司的管理机构设置是:设总经理一个,副总经理两个,直接对总经理负责,下设有6个部门,其中副总经理A管理生产部、安全部和质量部,副总经理B管理销售部、财务部和保卫部.请根据以上信息补充该公司的人事结构图,其中①、②处应分别填()

A.保卫部,安全部

B.安全部,保卫部

C.质检中心,保卫部

D.安全部,质检中心

答案:B30.命题“p:任意x∈R,都有x≥2”的否定是______.答案:命题“任意x∈R,都有x≥2”是全称命题,否定时将量词对任意的x∈R变为存在实数x,再将不等号≥变为<即可.故为:存在实数x,使得x<2.31.正多面体只有______种,分别为______.答案:正多面体只有5种,分别为正四面体、正六面体、正八面体、正十二面体、正二十面体.故为:5,正四面体、正六面体、正八面体、正十二面体、正二十面体.32.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.其它方式的抽样答案:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.故选B.33.已知正整数指数函数f(x)的图象经过点(3,27),

(1)求函数f(x)的解析式;

(2)求f(5);

(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.34.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()

A.有理数、零、整数

B.有理数、整数、零

C.零、有理数、整数

D.整数、有理数、零

答案:B35.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()

A.在圆上

B.在圆外

C.在圆内

D.以上都有可能答案:C36.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.

答案:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.故为:2πR237.A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒后,B、C才同时发现这一信号(该信号的传播速度为每秒1千米).若从A炮击敌阵地P,求炮击的方位角.答案:以线段AB的中点为原点,正东方向为x轴的正方向建立直角坐标系,则A(3,0)

B(-3,0)

C(-5,23)依题意|PB|-|PA|=4∴P在以A、B为焦点的双曲线的右支上.这里a=2,c=3,b2=5.其方程为

x24-y25=1

(x>0)…(3分)又|PB|=|PC|,∴P又在线段BC的垂直平分线上x-3y+7=0…(5分)由方程组x-3y+7=05x2-4y2=20解得

x=8(负值舍去)y=53即

P(8,53)…(8分)由于kAP=3,可知P在A北30°东方向.…(10分)38.不等式﹣2x+1>0的解集是(

).答案:{x|x<}39.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.40.四支足球队争夺冠、亚军,不同的结果有()

A.8种

B.10种

C.12种

D.16种答案:C41.如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。

答案:见解析解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得42.棱长为2的正方体ABCD-A1B1C1D1中,=(

A.

B.4

C.

D.-4答案:D43.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm44.设全集U={1,2,3,4,5},A∩C∪B={1,2},则集合C∪A∩B的所有子集个数最多为()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴当集合C∪A∩B的所有子集个数最多时,集合B中最多有三个元素:3,4,5,且A∩B=?,作出文氏图∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集个数为:23=8.故选D.45.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m•OA+n•OB+p•OC,m+n+p=1,说明M、A、B、C共面,可以判断A、B、C都是错误的,则D正确.故选D.46.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C47.设a、b、c均为正数.求证:≥.答案:证明略解析:证明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,则∴左边=≥=.∴原不等式成立.48.(几何证明选讲选做题)已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.

(1)求证:FB=FC;

(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=33,求AD的长.答案:(1)证明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四边形AFBC内接于圆,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圆的直径,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′49.若关于x的方程x2-2ax+2+a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.

(1)方程两根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:设f(x)=x2-2ax+2+a,(1)∵两根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。50.语句“若a>b,则a+c>b+c”是()

A.不是命题

B.真命题

C.假命题

D.不能判断真假答案:B第3卷一.综合题(共50题)1.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(

A.

B.

C.

D.,0∈M答案:A2.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且

则满足条件的函数f(x)有()

A.6个

B.10个

C.12个

D.16个答案:C3.设z∈C,|z|≤2,则点Z表示的图形是()A.直线x=2的左半平面B.半径为2的圆面C.直线x=2的右半平面D.半径为2的圆答案:由题意z∈C,|z|≤2,由得数的几何意义知,点Z表示的图形是半径为2的圆面,故选B4.若两条平行线L1:x-y+1=0,与L2:3x+ay-c=0

(c>0)之间的距离为,则等于()

A.-2

B.-6

C..2

D.0答案:A5.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=206.确定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由题意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故为:{5}7.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆8.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(

A.

B.

C.

D.答案:B9.如图为一个求50个数的平均数的程序,在横线上应填充的语句为()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A10.△ABC中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.答案:设最大角为∠A,最小角为∠C,则最大边为a,最小边为c因为A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.11.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A12.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(

A.

B.

C.

D.答案:D13.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故为:(16,0,-19).14.下列点在x轴上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C15.已知两点分别为A(4,3)和B(7,-1),则这两点之间的距离为()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故选D.16.在平面直角坐标系xOy中,若抛物线C:x2=2py(p>0)的焦点为F(q,1),则p+q=______.答案:抛物线C:x2=2py(p>0)的焦点坐标为(0,p2),又已知焦点为为F(q,1),∴q=0,p2=1,故p+q=2,故为2.17.过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M,N向准线l作垂线,垂足分别为M1,N1,则∠M1FN1等于()

A.45°

B.60°

C.90°

D.120°答案:C18.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.

答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.19.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()

A.

B.0

C.

D.0或答案:D20.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m•OA+n•OB+p•OC,m+n+p=1,说明M、A、B、C共面,可以判断A、B、C都是错误的,则D正确.故选D.21.用反证法证明“如果a<b,那么“”,假设的内容应是()

A.

B.

C.且

D.或

答案:D22.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.

B.

C.

D.

答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D23.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.

(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;

(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.24.直线L1:x-y=0与直线L2:x+y-10=0的交点坐标是()

A.(5,5)

B.(5,-5)

C.(-1,1)

D.(1,1)答案:A25.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数

C.a,b,c都是奇数

D.a,b,c都是偶数答案:B26.

008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:

比赛项目

票价(元/场)

篮球

1000

足球

800

乒乓球

500

若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为

A.2

B.3

C.4

D.5

答案:D27.在数学归纳法证明多边形内角和定理时,第一步应验证()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C28.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).29.在平面几何中,四边形的分类关系可用以下框图描述:

则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.30.已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于______.答案:设A(x1,y1)B(x2,y2)由y=x-1y2=4x⇒x2-6x+1=0⇒x1=3+22,x2=3-22,(x1>x2)∴由抛物线的定义知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故为:3+2231.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是(

A.

B.

C.

D.答案:B32.若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A33.已知2a=3b=6c则有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C34.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是______.答案:设圆上任意一点为A(x1,y1),AP中点为(x,y),则x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故为:(x-2)2+(y+1)2=135.直三棱柱ABC-A1B1C1中,若CA=a

CB=b

CC1=c

则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故选D.36.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.37.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:

(1)二进制表示中恰有5位数码的好数共有______个;

(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;

其中三位的二进制数是:101,110,111,共有C12+C22个;

其中四位的二进制数是:1011,1101,1110,1111,共有C23+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论