当代光学进展20130724_第1页
当代光学进展20130724_第2页
当代光学进展20130724_第3页
当代光学进展20130724_第4页
当代光学进展20130724_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

当代光学进展概述2013年7月24(一)几何光学当代理论的建立与发展(二)激光及相关光学学科的发展(三)量子光学研究(四)信息光学的大发展

(五)光本性的研究

上世纪后半叶发展起来的几何光学当代理论,经历了经典光线力学与量子光线力学两大阶段。经典光线力学是从初期的旧几何光学与牛顿力学相似性研究中脱颖出来的。论及旧几何光学与牛顿力学这两个看起来彼此独立学科的相关性,不得不从最小作用量原理的研究说起。

(一)几何光学当代理论的建立与发展1.最小作用量原理与初期的几何光学2.经典光线光学的建立3.量子光线力学

1.最小作用量原理与初期的几何光学

最小作用量原理从提出到发展渊源流长。它不仅在物理学的诸领域,甚至在整个自然科学乃至更大的学科范围内,都具有深刻的作用与宝贵的价值。仅就最小作用量原理在物理学中的地位而论,没有哪一个定律或定理能在如此漫长的历史长河中,如此贯彻始终地伴随着物理学全部进程而发展,也没有哪一个规律能有如此的魅力,始终吸引着众多的哲学家和科学家们;也没有哪一个规律能像它一样,把经典物理与近代物理,甚至把物理学与数学如此紧密地结合起来。最小作用量原理不仅反映了自然界的真与美,也反应了人们对自然规律的普遍性与简单性的追求。

(一)几何光学当代理论的建立与发展(1)公元40年,希腊工程师希罗(Hero50~)在对光的直线传播与反射定律的解释中,强调了自然现象的“经济本性”,并提出了光的最短路程原理。他认为光在空间两点间传播沿长度最短的路径,这是最小作用量原理的最早期表述。(2)公元6世纪,希腊新柏拉图主义哲学家奥林匹奥德鲁斯(Olympiodorus)在他所著的《反射光学》一书中,重申了自然界的“经济本性”,他认为“自然界不做任何多余的事,或者不做任何不必要的工作”。

(3)英国神学家、牛津大学的校长、培根的老师格罗斯泰斯特(GrossetesteRobert1175~1253)则认为,自然界总是以数学上最小和最优的方式运动和变化。英国哲学家奥卡姆(OckhamWilliam1285~1349)更为明确地指出:“对实际存在的事物,决不能不必要地添枝加叶”。(一)几何光学当代理论的建立与发展(4)使最小作用量原理发生质的飞跃的是法国数学家费马(Fermat,Pierrede1601~1665)。1657年,费马用“最短时间原理”,即后人所称的费马原理,修改了最短路程原理。这一原理表明:光在媒质中从一点向另一点传播时,总是沿花费时间最少的路径,即为最小值。

费马原理已成为几何光学领域中的高度概括性原理,它使以前似乎彼此独立无关的光的直线传播定律、反射定律、折射定律以及光路可逆性原理有了一个统一而又简捷、优美的表述。(5)法国数学家达兰贝尔(D'Alelnbert,Jean

LeRond1717~1783)与其后的法国数学家兼天文学家拉格朗日(Lagrange,JosephLouisComtede1736~1813)。

(一)几何光学当代理论的建立与发展他们在力学中应用变分法,把最小作用量原理发展为动力学的普遍原理——达兰贝尔-拉格朗日原理,并把它推广到多粒子系统。继达兰贝尔与拉格朗日之后,爱尔兰数学家、物理学家哈密顿(Hamilton,SirWilliam

Rowan1805~1865)把最小作用量原理又发展到了它的颠峰。哈密顿用具有动力学意义的正则变量(广义动量p和广义坐标q)代替只有运动学意义的广义速度P和广义坐标q,把拉格朗日函数和拉格朗日方程变换到哈密顿函数和哈密顿正则方程,对比费马原理提出了等时最小作用量原理,即哈密顿原理,由它可以导出全部力学的基本定理和运动方程,不仅适用于完整保守系,而且还可以推广到非保守系和非完整系。

(一)几何光学当代理论的建立与发展经典力学哈密顿理论的建立,具有双重深远的意义:其一是它成为经典力学向量子力学过渡的桥梁。在正则方程的基础上发展起来的哈密顿-雅柯比方程已成为量子力学建立以前研究量子力学的主要方法;其二是这一原理中的对偶性思想,对偶性即力学与几何光学运动方程中的相似性。这些相似性表明,一个粒子的行为可以由波动性描述;而光的波动性又可以与粒子的行为相关,这就是哈密顿原理中所蕴含的对偶性思想。

12(一)几何光学当代理论的建立与发展2.经典光线光学的建立经典光线力学又称为哈密顿光学,它是由D.马库斯(D.

Marcuse)等人从几何光学与经典力学的相似性出发,根据费马原理建立起来的。他们在直角坐标系中,假定光沿z轴方向传播,首先引入了描述光传输的线元ds。为建立光线力学的哈密顿方程,在光线拉格朗日函数L的基础上,引入光线的广义动量,于是,由广义动量与广义坐标定义哈密顿函数H(x,y,px,py)。然后,由光线的哈密顿正则方程,找到哈密顿函数的表述形式,其中n为传输介质的折射率。这个函数恰与静止质量为m0的单粒子的相对能量式相似。若采用光线传播的近轴条件,即x′<1,y′<1,把变化的折射率n表述为常量n0与小变量△n两部分,即n=n0+△n,再利用级数展开,所得到的哈密顿函数又恰好与非相对论近似条件下的单粒子力学的哈密顿函数有着惊人的相似。这些结果表明,质点力学的非相对论近似理论正对应着几何光学中的近轴理论,只是光线力学比质点力学低一维,单粒子的势能正好对应传光媒质的折射率。(一)几何光学当代理论的建立与发展3.量子光线力学上世纪80年代以来,随着纤维光学的进展,在对光的传输与发射研究中,光的量子特性迫使人们不得不对光线力学以及波动光学加以改造,改造的目标就是建立一门新型的量子光线力学。理论的进展仍然是从哈密顿原理所隐含的对偶性出发的。对偶性启示人们,不仅应对光线力学中的“光线”概念加以改造,使其具有波粒二象性,还应赋予波动力学中的“纯波动”以粒子性特征。

(一)几何光学当代理论的建立与发展(二)激光及相关光学学科的发展

(二)激光及相关光学学科的发展1.微波激射器与量子电子学的诞生1917年,爱因斯坦在研究黑体辐射对气体平衡计算时,发现了辐射具有两种形式,自发辐射和受激辐射,从而提出了受激辐射的理论。受激辐射发生的条件是实现粒子数反转,粒子数反转这一思想至关重要,然而在当时人们的心目中,认为这是不可思议的。因为在热平衡条件下,低能级粒子数总要比高能级粒子数多,实现粒子数反转就等于要破坏热平衡,这一点与人们的想法相违,初期粒子数反转思想未能引起更多人的注意。

(二)激光及相关光学学科的发展1951年,美国物理学家珀塞尔(Purcell,Edwaed

Mills

1912~)用微波波谱学的方法,测定了核磁矩。为增强微波信号,他应用了突然倒转场的方法。当外磁场极性改变比核自旋的响应快时,在氟化锂晶体中实现了核自旋体的反转分布,此时,他意外地观察到了频率为50kHz的受激辐射。应用玻尔兹曼分布规律,珀塞耳对该现象做出了解释。根据这一结果,珀塞尔首先提出“负温度”概念,并把粒子数反转称为“负温度”状态。粒子数反转状态的实现不仅表明“负温度”并非不可逾越,而且使人们对于玻尔兹曼分布有了更全面也更深刻的认识。与此同时,朝向同一目标的另一番工作也在另外一个领域中进行着。由于雷达技术发展的需要,人们正在研制一种高强度的微波器件。二战期间,美国物理学家汤斯(Townes,CharlesHard

1915~)曾在贝尔实验室从事雷达导航系统研究。战后,他在哥伦比亚大学物理系执教期间,应军方邀请,开始致力于缩短雷达使用波长的研究。但是这一课题进行极不顺利,他屡遭失败,几度陷入困境。1951年春,他到华盛顿参加一个工作会议。与会期间的一天早晨,正当他坐在华盛顿市一个公园的长凳上等待饭店开门时,脑子里突然闪现出来一个想法,这就是利用分子受激发射的方式代替电子线路放大,实现微波放大的设想。汤斯头脑中所闪现的这个“小火花”,使他激动不已,很短的时间内,一个实验的方案被设想了出来。他打算用电流加热的方式,把能量泵入氨分子中,使它们处于受激状态。当受激分子恰好处于与氨分子固有频率相同的微波波束之中时,微波波束与氨分子通过反复作用,使泵入氨分子中的能量传递到微波波束之中,原来入射的弱波束就有可能在短时间内,以雪崩方式促发为强微波波束,汤斯把这一设想的要点就记在了一个信封的背面上。

(二)激光及相关光学学科的发展从1951年年底,在美国海军和陆军的资助下,汤斯和他的两个学生戈登、蔡格尔一起,经过了两年的研究,终于在1954年研制成功波长为1.25cm的氨分子振荡器,他们把它称为受激辐射微波放大器,按其字母缩写为MASER,简称为脉泽。脉泽具有稳定的振动频率,可以用它制成用于计时的“原子钟”。

1955年,前苏联物理学家巴索夫(Basov,1922~)和普罗霍洛夫(Prokchorov,Alexander

Mikhailovich

1916~)提出了用三级能的方法实现粒子数反转。就这样,在1958年,以量子电子学的研究为基础,汤斯、肖洛和巴索夫、普罗霍洛夫等人已经分别提出了把量子放大技术用于毫米波、亚毫米波及可见光波段的可能性,这一研究为激光的诞生铺平了道路。由于在脉泽、激光及量子电子学基础理论方面的工作,巴索夫、普罗霍洛夫与汤斯共同分享了1964年诺贝尔物理学奖。

(二)激光及相关光学学科的发展2.向更短波长进发——激光器的问世(二)激光及相关光学学科的发展在向更短波长进发的过程中,汤斯的第一个目标是由毫米波进入亚毫米波段。然而,在一开始他就遇到了麻烦。首先,要使振荡腔的长度与波长相当,制造1厘米以下的振荡腔非常困难;其次,由于振荡腔的缩小,内含物质少又严重地限制了放大性能。在克服这一困难的过程中,汤斯发现,若把波长缩短到红外或可见光区域,腔体尺寸带来的杂散振荡反倒有可能随之减小,这使他倍受鼓舞。此时,汤斯的姻弟——肖洛(Schawlow,Arthur

L.1921~)从光学中的F-P干涉仪得到启发,提出一个设想,即用一对反射镜代替封闭的谐振腔,以控制不必要的振荡模式。

1958年,肖洛与汤斯联名在《物理评论》上发表了重要论文《红外与光激射器》。这篇论文不仅给出了受激辐射光产生的必要条件,而且还详细地论述了光激射器的若干理论问题,论证了F-P*仪代替谐振腔减少过剩波型及自激辐射的机制,还提出了以钾蒸气为工作物质、钾灯为泵浦源的红外激射器的设计方案。

首先摘取激光器发明桂冠的是休斯飞机公司所属研究室的美国物理学家梅曼(Maiman,Theodore

Harold

1927~)。梅曼的成功不是偶然的,他是电气工程师之子,靠修理电器半工半读读完大学。1949年从科罗拉多大学毕业后,考入斯坦福大学攻读研究生,1955年获得博士学位。他的导师兰姆(Lamb,Willis

Eu-genen

Jr.1913~)曾因发现著名的氢原子谱线兰姆位移而获得1955年诺贝尔物理奖。在梅曼随导师一起研究兰姆位移过程中,梅曼曾提出利用反转分布使氢原子的不同能态间产生受激辐射的设想,并以这一设想展开了他的博士论文《利用波和光的双共振研究氢原子的激发态》。1956年,梅曼应邀到休斯飞机公司的一个研究所工作,致力于红宝石微波放大器的研究,1959年8月转而研制激光器。由于他对红宝石的经验,经过一番选择后,他选用了掺钕红宝石晶体作为工作物质,以脉冲氙灯作为光泵,终于在1960年5月获得了成功。梅曼等人研制成功的第一台激光器的工作物质是长2cm、直径1cm的掺钕红宝石棒,它的两端被磨平后镀银,其中一个镀银面中心有一个直径1mm的透光孔,泵浦光源为螺旋形氙灯。(二)激光及相关光学学科的发展3.肖洛及激光光谱学的大发展

(1)传统光谱学的建立与发展

传统光谱学的研究已有近百年的历史,对光谱现象首先进行观察的就是牛顿。由于阅读了玻意耳的色彩学著作,激起了牛顿对光学的兴趣。在1666年,牛顿首次应用玻璃棱镜把太阳光分解为各色光谱,随后,又把各色光谱线汇合成白光,从而证明白色光为各色光的复合光。光谱学作为一门实用性学科,是由物理学家和化学家共同开创起来的。

光谱学不仅开始作为定性化学分析方法,同时也用来进行天体成分的研究,基尔霍夫首先利用光谱确定了太阳中的六种元素。光谱学的发展对于化学学科,天文学,量子力学的发展具有重要作用。(二)激光及相关光学学科的发展由于激光器所注入的活力,从60到70年代末期,激光光谱学的进展异常神速。肖洛所在的斯坦福大学研究组始终站在激光光谱研究领域的最前列。这个研究组除了肖洛外,还有一位年青教授汉施(Hansch,

T.W)。汉施1968年从德国海德堡大学获得博士学位后不久,便来到斯坦福大学任教。他们领导着来自世界各地的几位访问学者和近十名博士研究生。在整个70年代中,这个友好且富于创造性的研究集体在高分辨率激光光谱学的研究中,做出了多方面的重要贡献,所创造的激光光谱学方法居世界领先地位。它们是:饱和吸收光谱(1971)、内调制荧光光谱(1972)、双光子光谱(1974)、激光识别光谱(1976)、偏振光谱(1976)、两步偏振标识光谱(1979)、光电流光谱(1979)、偏振内调制激励光谱(1981),双光子光谱技术,瞬态激光光谱学等。肖洛与布洛姆根(Bloembergen,Nicolaes

1920~)共同获得1981年诺贝尔物理学奖。

(2)肖洛与激光光谱学

(二)激光及相关光学学科的发展(三)量子光学研究(三)量子光学1.混沌光场与相干态光场量子概念是从黑体辐射研究中引出的,黑体辐射是持续了50多年的跨世纪研究。普朗克的能量子成为近代量子物理学的生长点。紧接其后的是爱因斯坦提出了光量子假设。

在激光问世以前,人们所接触与使用的光,包括热辐射、固体发光、气体放电等,都是发自大量彼此独立的原子(或分子)的光的集合。各个原子发出的光在相位上彼此毫无关联,这种光场称为混沌光场。传统光学以混沌光场为研究对象,判断相干光也只是以这种光场能否发生干涉为依据。因此,相干性的实质被认定为:不同时空点处光场的相位关联程度。(三)量子光学这是具有极大局限性的相干性概念,它持续了数百年。直到1956年

由汉堡、布朗及退斯所完成的光学关联实验。这一实验又常以三人姓氏第一字母打头,被称为HBT实验。这样,相关器测量到的将是两个不同时空点光场强度起伏的关联,不再是过去的相干实验中所测的光场强度自身的相位关联。通过这一实验,他们首次证实了光场存在有高阶相关效应,这是过去任何经典干涉与衍射实验所没能观察到的。就相干光的频率而言,光场的强度起伏关联是一个缓慢变化的量,它的测量值受到外界的扰动要比测量相位关联微弱得多。(三)量子光学

HBT实验给相干性带来了全新的概念。根据经典理论,传统光场的随机性只用一个一阶相关函数描述就够了,这就是一阶相干度为1时,即对应完全相干性情况。然而,HBT实验测出的光场起伏却表明,上述相干性的描述并不完备,还必须补充二阶或更高阶的相关函数。只有当一阶、二阶或更高阶的相干度均为1时,才能称为完全相干光。在普通光源情况下,不可能获得这种真正的完全相干光。然而,一台理想的激光器所产生的光场就处于相干态,只有激光诞生后,人们才有可能获得真正的相干光源。

2.压缩态研究

HBT实验表明,量子电磁场意义下的相干态光场,并不是无噪声的光场,它们包含了真空起伏的量子涨落,因而具有经典体系所不具有的统计性质。这种光场的量子性又导致人们对压缩态的研究。(三)量子光学根据量子场论,处于真空中,各量子场的每一个振动模式仍会不停地振动,这种振动称为真空零点振荡。与此同时,真空中各量子场间还会相互作用,不断有各种虚粒子产生、消失或转化,这就是真空的量子涨落。从这种意义上看,真空本身就是一种极其复杂的媒质。当用量子场论的观点、方法研究光的传播时,一束具有确定频率、确定偏振态和传播方向的单模光波,其振动的模量与相位角均为互不对易的算符,根据测不准原理,完全相干光条件下的量子相干态,在振幅平面上不再对应于一个点,而是一个圆斑。圆斑的大小等于电场的真空起伏涨落,称为零点振动。这意味着,即使在“完全黑暗”之中,电磁场仍存在微小的起伏。

近年来,研究人员发现,在某些情况下,光束中的这种量子噪音可以被压缩到很小,而且,当光波的一部分噪音被压缩至很小时,另一部分光波噪音却被放大,而对被压缩噪音的光波进行测量时,其精确度有可能超出测不准原理给出的限制。

真空噪音是由许多无规则的波构成的,它们具有相同的频率,但振幅与相位却呈现无规则变化。当一定相位的波被放大时,另外一些波则被衰减。能量重新分配的结果,腔内的真空噪音将由一部分高振幅波与一部分低振幅波组成,这两部分波的强弱又交替变化着,这种光波即称为压缩态。

压缩光是非经典光,它的量子特性对于揭示场的物理本质有着重要的价值。压缩态光场又是通过非线性过程由相干光场产生的,对它的研究又使量子光学与非线性光学得到了交叉。同时,由于压缩光具有比一般标准量子噪音低的起伏,可以大幅度地提高信噪比,可望能在对像引力波这样的微弱信号检测、光通信及原子、分子物理学等方面得到特殊的应用,因此,光压缩态研究已成为目前光学领域中重要的基础研究与前沿课题之一。(三)量子光学3.腔量子电动力学量子光学的目标是在量子电动力学的理论框架内,重新研究各种非线性相互作用过程,目的在于揭示各种非经典效应,研究产生这些效应的实验方法,并开辟它们的应用途径。

处于激发态的原子,可以通过自发辐射过程跃迁到基态。实际上,引起自发辐射的物理机制是真空的量子起伏。由量子电动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论