2022-2023学年四川成都市温江区达标名校中考数学模拟精编试卷含解析_第1页
2022-2023学年四川成都市温江区达标名校中考数学模拟精编试卷含解析_第2页
2022-2023学年四川成都市温江区达标名校中考数学模拟精编试卷含解析_第3页
2022-2023学年四川成都市温江区达标名校中考数学模拟精编试卷含解析_第4页
2022-2023学年四川成都市温江区达标名校中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,空心圆柱体的左视图是()A. B. C. D.2.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.323.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A.5:2 B.3:2 C.3:1 D.2:14.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A. B. C. D.5.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.46.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()A.a+b<0 B.a>|﹣2| C.b>π D.7.计算的结果是()A.a2 B.-a2 C.a4 D.-a48.当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是()A. B. C. D.x为任意实数9.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.2510.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π二、填空题(共7小题,每小题3分,满分21分)11.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.12.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.13.化简:=_____.14.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.15.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是_____.16.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.17.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.三、解答题(共7小题,满分69分)18.(10分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y的最小值(保留一位小数),此时点P在图1中的什么位置.19.(5分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(8分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.21.(10分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.22.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.23.(12分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.24.(14分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C.【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.2、D【解析】

如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.3、C【解析】

求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,

阴影部分的面积,

空白部分与阴影部分面积之比是::1,

故选C.【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.4、A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故选B.考点:1.切线的性质;3.矩形的性质.5、C【解析】在实数﹣,0.21,,,,0.20202中,根据无理数的定义可得其中无理数有﹣,,,共三个.故选C.6、D【解析】

根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.【详解】a=﹣2,2<b<1.A.a+b<0,故A不符合题意;B.a<|﹣2|,故B不符合题意;C.b<1<π,故C不符合题意;D.<0,故D符合题意;故选D.【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键.7、D【解析】

直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.8、B【解析】分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.详解:对称轴是:x=1,且开口向上,如图所示,∴当x<1时,函数值y随着x的增大而减小;故选B.点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.9、C【解析】

先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.10、D【解析】

根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.二、填空题(共7小题,每小题3分,满分21分)11、10%【解析】

设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.【详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去).答:平均每次上调的百分率为10%.故答案是:10%.【点睛】此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12、﹣1【解析】

根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,∴4+1m+1n=0,∴n+m=−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13、【解析】

先算除法,再算减法,注意把分式的分子分母分解因式【详解】原式===【点睛】此题考查分式的混合运算,掌握运算法则是解题关键14、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延长线,先证明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=,BF=BD=,EF==.【详解】∵∠ABC=∠ADC,∴A,B,C,D四点共圆,∴AC为直径,∵E为AC的中点,∴E为此圆圆心,∵F为弦BD中点,∴EF⊥BD,连接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延长线,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四边形BNDM为矩形,又∵DM=DN,∴矩形BNDM为正方形,∴BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD为正方形BNDM的对角线,∴BD=BN=,BF=BD=,∴EF===.故答案为.【点睛】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.15、2【解析】

根据平方根的定义进行计算即可.【详解】.解:∵i2=﹣1,∴(1+i)•(1﹣i)=1﹣i2=2,∴(1+i)•(1﹣i)的平方根是±,故答案为±.【点睛】本题考查平方根以及实数的运算,解题关键掌握平方根的定义.16、1【解析】

根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.【详解】解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,,解得,,故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17、22.5【解析】

连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.【详解】连接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵点C为的中点,

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案为:22.5°.【点睛】本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.三、解答题(共7小题,满分69分)18、(1)4.5(2)根据数据画图见解析;(3)函数y的最小值为4.2,线段AD上靠近D点三等分点处.【解析】

(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P在图1中的位置为.线段AD上靠近D点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y的最小值为4.2,此时点P在图1中的位置为.线段AD上靠近D点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.19、(1);(2)①2,②【解析】分析:(1)重合部分是等边三角形,计算出边长即可.①证明:在图3中,取AB中点E,证明≌,即可得到,②由①知,在旋转过程60°中始终有≌四边形的面积等于=.详解:(1)∵四边形为菱形,∴∴为等边三角形∴∵AD//∴∴为等边三角形,边长∴重合部分的面积:①证明:在图3中,取AB中点E,由上题知,∴又∵∴≌,∴∴,②由①知,在旋转过程60°中始终有≌∴四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.20、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1)连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)∵抛物线过点A(1,0)和B(1,0)(2)∵∴点C为线段DE中点设点E(a,b)∵0<m<1,∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E纵坐标的范围为(1)连结BD,过点D作x轴的垂线交BC于点H∵CE=CD∴H(m,-m+1)∴当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.21、(1)见解析;(2)m=-1.【解析】

(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.【详解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴无论m取何值,(m+1)2恒大于等于1∴原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程两个根均为正整数,且m为负整数∴m=-1.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.22、(1);(2)不能成为平行四边形,理由见解析【解析】

(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;

(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.【详解】解:(1)∵点在直线上,∴.∵点在的图像上,∴,∴.设,则.∵∴.记的面积为,∴.(2)当点为中点时,其坐标为,∴.∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,∴,∴,∴与不能互相平分,∴四边形不能成为平行四边形.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论