版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022安徽省滁州市李二庄中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)(2009?天津)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.23参考答案:B【考点】:简单线性规划的应用.【专题】:不等式的解法及应用.【分析】:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以zmin=4+3=7,故选B.【点评】:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.2.已知函数的定义域为,且,为的导函数,函数的图象如图所示,则不等式组所表示的平面区域的面积是(
)A.3
B.4
C.5
D.参考答案:A略3.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为(
)A.
B.
C.
D.参考答案:B略4.如图,已知四棱锥P—ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.
(1)证明:平面PAD⊥平面PCD;(2)求AC与PB所成的角的余弦值.参考答案:证明:(1)∵AB∥DC,∠DAB=90°,∴DC⊥AD,又PA⊥面ABCD,∴PA⊥DC,∴DC⊥面PAD,又DC面PDC,∴平面PAD⊥平面PCD;解:(2)以A为原点,AD,AB,AP分别为x,y,z轴,建立空间直角坐标系,则A(0,0,0),P(0,0,1),D(1,0,0),C(1,1,0),B(0,2,0),∴=(1,1,0),=(0,2,-1),设AC与PB所成的角为(0<<90°)∴cos=|cos<,>|===.
略5.已知α、β、γ是三个互不重合的平面,l是一条直线,下列命题中正确命题是()A.若α⊥β,l⊥β,则l∥αB.若l上有两个点到α的距离相等,则l∥αC.若l⊥α,l∥β,则α⊥βD.若α⊥β,α⊥γ,则γ⊥β参考答案:C【考点】空间中直线与平面之间的位置关系.【专题】阅读型.【分析】由线面平行的判定方法,我们可以判断A的真假;根据直线与平面位置关系的定义及几何特征,我们可以判断B的真假;根据线面垂直的判定定理,我们可以判断C的真假;根据空间平面与平面位置关系的定义及几何特征,我们可以判断D的真假.进而得到答案.【解答】解:A中,若α⊥β,l⊥β,则l∥α或l?α,故A错误;B中,若l上有两个点到α的距离相等,则l与α平行或相交,故B错误;C中,若l⊥α,l∥β,则存在直线a?β,使a∥l,则a⊥α,由面面垂直的判定定理可得α⊥β,故C正确;D中,若α⊥β,α⊥γ,则γ与β可能平行也可能相交,故D错误;故选C【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间直线与平面,平面与平面位置关系的定义及判定方法,是解答本题的关键.6.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3参考答案:D分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.7.已知条件:=,条件:直线与圆相切,则是的(
)A.充分不必要条件
B.必要不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:A略8.圆上的点到直线的距离最大值是(
)A.
2
B.
1+
C.
D.1+.参考答案:B9.极坐标方程
表示的曲线为(
)A、极点
B、极轴
C、一条直线
D、两条相交直线参考答案:D10.已知函数f(x)=3-4x-2x2,则下列结论不正确的是(
)A.在(-∞,+∞)内有最大值5,无最小值 B.在[-3,2]内的最大值是5,最小值是-13C.在[1,2)内有最大值-3,最小值-13
D.在[0,+∞)内有最大值3,无最小值参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.如右图,圆锥中,、为底面圆的两条直径,,且,,为的中点.异面直线与所成角的正切值为
.参考答案:略12.过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为,则直线l的斜率为__参考答案:1或13.直线经过,且在轴上的截距等于在轴上的截距的2倍的直线方程为
.参考答案:或
14.若要做一个容积为108的方底(底为正方形)无盖的水箱,则它的高为时,材料最省.参考答案:315.若椭圆+=1的离心率为,则实数k的值为.参考答案:5或12【考点】双曲线的简单性质.【分析】椭圆+=1的离心率为,=或=,即可求出实数k的值.【解答】解:∵椭圆+=1的离心率为,∴=或=,∴k=5或12,故答案为:5或12.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,比较基础.16.若圆以抛物线的焦点为圆心,且与抛物线的准线相切,则该圆的标准方程是__
___.参考答案:略17.下面的程序运行后的结果为__________(其中:“(a+j)mod
5”表示整数(a+j)除以5的余数)参考答案:0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知,若q是p的必要而不充分条件,求实数的取值范围.参考答案:解:由得。由
得
·····6分∵q是p的必要而不充分条件∴由得又时命题成立。∴实数的取值范围是
·····12分略19.设计算法求的值。要求画出程序框图,写出用基本语句编写的程序。参考答案:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法。程序框图如图所示:程序如下:20.(本小题满分10分)已知等比数列的公比为正数,且.
(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前项和.参考答案:(1)设数列的公比为,且由得又,
∴的通项公式
(2)
21.设椭圆的中心在原点,焦点在轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.参考答案:设椭圆的中心在原点,焦点在轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.
若,则当时最大,即,,故矛盾.
若时,时,,所求方程为22.设,为直角坐标平面内轴正方向上的单位向量,若向量,,且.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点(0,3)作直线与曲线交于两点,设,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 涉外货物买卖合同新版
- 简单家居装修合同范本
- 买二手房定金合同范文2024年
- 建筑企业流动资金贷款合同样式
- 《甜叶菊组织培养》课件
- 17《爬天都峰》 公开课一等奖创新教学设计
- 《6 怎么都快乐》公开课一等奖创新教学设计及反思
- 《烧伤与冷伤》课件
- 年产xx塑料发泡板项目建议书
- 年产xxx防盗窗材料项目可行性研究报告(创业计划)
- 《我的白鸽》课件
- 国开2024年《中国法律史》平时作业1-3答案
- MOOC 国际私法-暨南大学 中国大学慕课答案
- 大学生职业规划大赛成长赛道参赛作品
- GB 17790-2008家用和类似用途空调器安装规范
- 五年级上册数学课件 -《平行四边形的面积》 人教版(共15张PPT)
- 力士乐驱动器使用说明
- FSCapture使用教程
- 中心组理论学习调研报告(精简篇)
- 手术室护理常规
- 学困生的分类及特点
评论
0/150
提交评论