版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖南省岳阳市弼时中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.执行如右图所示的程序框图,若输出的值为-105,则输入的n的值可能是(
)A.5
B.7
C.8
D.10参考答案:C2.直线l1:(a+3)x+y﹣4=0与直线l2:x+(a﹣1)y+4=0垂直,则直线l1在x轴上的截距是()A.1 B.2 C.3 D.4参考答案:B【考点】直线的一般式方程与直线的垂直关系;直线的截距式方程.【分析】利用直线l1:(a+3)x+y﹣4=0与直线l2:x+(a﹣1)y+4=0垂直,求出a,再求出直线l1在x轴上的截距.【解答】解:∵直线l1:(a+3)x+y﹣4=0与直线l2:x+(a﹣1)y+4=0垂直,∴(a+3)+a﹣1=0,∴a=﹣1,∴直线l1:2x+y﹣4=0,∴直线l1在x轴上的截距是2,故选:B.3.设,则取最小值时的值为
(
) A.
B.
C.
D.参考答案:C4.已知抛物线的焦点为F,点P为抛物线上的动点,点,则的最小值为(
)A.2 B. C. D.参考答案:C【分析】先记点到抛物线准线的距离为,根据抛物线的定义,将化为,再设直线的方程为,因此求的最小值,即是求的最小值,由此可得,直线与抛物相切时,最小,联立直线与抛物线方程,结合判别式,即可求出结果.【详解】记点到抛物线准线的距离为,由抛物线定义可得,因此求的最小值,即是求的最小值,设直线的方程为,倾斜角为易知,,因此当取最小值时,最小;当直线与抛物线相切时,最小;由可得,由得,即,所以,即.因此,的最小值为.故选C【点睛】本题主要考查抛物线定义、以及直线与抛物线位置关系,熟记定义以及抛物线的简单性质即可,属于常考题型.5.若一个几何体的正视图和侧视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆锥C.圆台D.棱台参考答案:C略6.参考答案:A略7.如果命题“p或q”是真命题,“非p”是假命题,那么(
)A.命题p一定是假命题 B.命题q一定是假命题C.命题q一定是真命题 D.命题q是真命题或者假命题参考答案:D8.数列的通项,其前n项和为,则为A.470
B.490
C.495
D.510参考答案:A9.已知函数
(
)A
B
C
D参考答案:B10.函数f(x)=x3+x,x∈R,当时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是()A.(0,1) B.(﹣∞,0) C. D.(﹣∞,1)参考答案:D【考点】函数恒成立问题;函数奇偶性的性质;奇偶性与单调性的综合.【分析】由f(x)=x3+x,可知f(x)为奇函数,增函数,得出msinθ>m﹣1,根据sinθ∈[0,1],即可求解.【解答】解:由f(x)=x3+x,∴f(x)为奇函数,增函数,∴f(msinθ)+f(1﹣m)>0恒成立,即f(msinθ)>f(m﹣1),∴msinθ>m﹣1,当时,sinθ∈[0,1],∴,解得m<1,故实数m的取值范围是(﹣∞,1),故选D.二、填空题:本大题共7小题,每小题4分,共28分11.在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.则在第一次抽到理科题的条件下,第二次抽到理科题的概率为
▲
;参考答案:.
略12.椭圆的焦点为,点P在椭圆上,如果线段中点在y轴上,且,则的值为_______。参考答案:713.三点在同一条直线上,则k的值等于
参考答案:略14.已知命题p:?x0∈(0,+∞),﹣=,则¬p为.参考答案:?x∈(0,+∞),﹣2﹣x≠【考点】命题的否定.【专题】定义法;简易逻辑.【分析】根据已知中的原命题,结合特称命题的否定方法,可得答案.【解答】解:命题“?x0∈(0,+∞),﹣2=”的否定为命题“?x∈(0,+∞),﹣2﹣x≠”,故答案为:?x∈(0,+∞),﹣2﹣x≠【点评】本题考查的知识点是特称命题的否定,难度不大,属于基础题.15.已知命题“”是真命题,则实数a的取值范围是
▲
.参考答案:16.在△ABC中,D为BC边上一点,,,.若,则BD=
▲
.参考答案:略17.某同学在一次研究性学习中发现:若集合满足:,则共有9组;若集合满足:,则共有49组;若集合满足:,则共有225组.根据上述结果,将该同学的发现推广为五个集合,可以得出的正确结论是:若集合满足:,则共有
组.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)如图1,在四棱锥中,底面为正方形,侧棱底面分别为的中点。(1)证明平面;(2)设,求二面角的大小。参考答案:解法一(传统法):(1)作交于点,则为的中点。连结,又,故为平行四边形。,又平面平面。所以平面。(2)如图2,不妨设,则为等腰直角三角形取中点,连结,则。又平面,所以,而,所以面。取中点,连结,则。连结,则。故为二面角的平面角。所以二面角的大小为。解法二:(I),又是平面的一个法向量,,,平面同理,设平面的一个法向量为,则由题意可知,即,取,则,。,由题意可知,二面角的大小为。略19.(本小题满分12分)为振兴旅游业,某省2012年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到该省名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。(I)在该团中随机采访2名游客,求恰有1人持银卡的概率;(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.参考答案:(II)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为:事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况,则所以采访该团2人,持金卡与持银卡人数相等的概率是.
……12分20.(本题满分12分)命题关于的不等式对一切恒成立;函数是增函数,若为真,为假,求实数的取值范围.参考答案:解:设,由于关于的不等式对一切恒成立,所以函数的图象开口向上且与轴没有交点,故…3分函数是增函数,则有即
………………6分又由于为真,为假,可知一真一假.
………………8分(1)若,则此不等式组无解;
………………10分(2)若,则.综上可知,所求实数的取值范围为.
………………12分21.设二次方程有两个实根和,且满足.(1)试用表示;(2)求证:是等比数列;(3)当时,求数列的通项公式.参考答案:(1)解析:,而,得,
即,得;(2)证明:由(1),得,所以是等比数列;(3)解析:当时,是以为首项,以为公比的等比数列,
,得.
22.(12分)从高三年级学生中随机抽取名学生,测得身高情况如下表所示:(I)请在频率分布表中的①、②位置填上相应的数据,并在所给的坐标系中补全频率分布直方图,再根据频率分布直方图估计众数的值;(II)按身高分层抽样,现已抽取人参加一项活动,其中有名学生担任迎宾工作.记这名学生中“身高低于170cm”的人数为,求的分布列及期望.
参考答案:(1)①20
②0.350
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024护理安全培训
- 物理因子疗法及康复护理水疗法
- 医护理系彭芳
- 实验室主任安全培训
- 大班语言活动生字表
- 对新员工的财务培训
- 7月珠宝活动策划方案
- 数学学案:课堂导学函数的表示方法第课时分段函数
- 2岁护理方法和技巧
- 健康扶贫培训教材
- 第五单元学雷锋在行动(教案)全国通用五年级下册综合实践活动
- 服装店人员不稳定分析报告
- GB 37219-2023充气式游乐设施安全规范
- NB-T 47013.7-2012(JB-T 4730.7) 4730.7 承压设备无损检测 第7部分:目视检测
- 《梯形的认识》(课件)-四年级上册数学人教版
- 肝吸虫护理查房课件
- 北京开放大学《现代管理专题》终结性考试复习题库(附答案)
- 小腿抽筋的原因以及缓解和自救方法定稿
- 2023年度高级会计实务真题及答案解析
- 南开大学答辩通用模板
- 国网福建省电力有限公司高校毕业生招聘笔试真题2021
评论
0/150
提交评论