




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列性质中菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.既是轴对称图形又是中心对称图形2.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110° B.115° C.120° D.130°3.计算(-1)×2的结果是()A.-2 B.-1 C.1 D.24.在0,π,﹣3,0.6,这5个实数中,无理数的个数为()A.1个 B.2个 C.3个 D.4个5.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称6.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣47.如图所示的几何体的左视图是()A. B. C. D.8.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为A. B. C. D.9.的倒数的绝对值是()A. B. C. D.10.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是().A. B. C. D.11.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=53,则∠B的度数是(
)A.30°B.45°C.50°D.60°12.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次根式在实数范围内有意义,x的取值范围是_____.14.因式分解:x2﹣3x+(x﹣3)=_____.15.如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.17.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.18.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)有这样一个问题:探究函数y=﹣2x的图象与性质.小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=﹣2x的自变量x的取值范围是_______;(2)如表是y与x的几组对应值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…则m的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质________.20.(6分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)21.(6分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60°,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).22.(8分)计算:12+(13)﹣2﹣|1﹣3|﹣(π+1)023.(8分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.24.(10分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.25.(10分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.26.(12分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).27.(12分)如图,点,在上,直线是的切线,.连接交于.(1)求证:(2)若,的半径为,求的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质2、A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.3、A【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】-1×2=-故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.4、B【解析】
分别根据无理数、有理数的定义逐一判断即可得.【详解】解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5、D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.6、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.8、C【解析】分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1800000这个数用科学记数法可以表示为故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.9、D【解析】
直接利用倒数的定义结合绝对值的性质分析得出答案.【详解】解:−的倒数为−,则−的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.10、C【解析】
根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.11、D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.则sinD=AC∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.12、C【解析】
根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.【详解】①(﹣2a2)3=﹣8a6,错误;②(x﹣2)(x+3)=x2+x﹣6,错误;③(x﹣2)2=x2﹣4x+4,错误④﹣2m3+m3=﹣m3,正确;⑤﹣16=﹣1,正确.计算正确的有2个.故选C.【点睛】考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x≤1【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,1﹣x≥0,解得,x≤1,故答案为x≤1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.14、(x-3)(x+1);【解析】根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案为(x﹣3)(x+1).点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.15、(1,0);(﹣5,﹣2).【解析】
本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,故此一次函数的解析式为…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为…②
联立①②得
解得,故AE与CG的交点坐标是(-5,-2).
故答案为:(1,0)、(-5,-2).16、【解析】
设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.17、【解析】
连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题【详解】解:连接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案为.【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形18、.【解析】
直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【详解】过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG==1,∴CO=.故答案为.【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.【解析】
(1)没有限定要求,所以x为任意实数,(2)把x=3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;故答案为任意实数;(2)把x=3代入y=﹣2x得,y=﹣;故答案为﹣;(3)如图所示;(4)根据图象得,①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.故答案为①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.20、见解析【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;21、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解析】
(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;(1)根据等边三角形的判定和性质即可求解;(3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.【详解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范围是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等边三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即当∠CPN=60°时,x=6;(3)连接MN、EF,分别交AC于B、H,∵PM=PN=CM=CN,∴四边形PNCM是菱形,∴MN与PC互相垂直平分,AC是∠ECF的平分线,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分线,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9•MB1=9•(6x﹣x1),∴y=π•EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【点睛】此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.22、3【解析】
先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【详解】解:原式=23=23=【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.23、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解析】
(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴抛物线解析式为:y=-x2-x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,则点N为AC中点.∴DN时△ABC的中位线,∵DN=DM=BC=,∴OM=DM-OD=∴点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.24、(1)50;(2)详见解析;(3)220.【解析】
(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。25、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB23-T2945-2021-相变沥青混合料路面设计与施工技术规范-黑龙江省
- DB23-T2878-2021-过伐林红松大径材单株抚育技术-黑龙江省
- DB23-T2842-2021-政务信息资源数据交换规范-黑龙江省
- 基层医院采购管理制度
- 工具集中采购管理制度
- 工程公司工地管理制度
- 商场收银收款管理制度
- 创业培训教师管理制度
- 创业期间公司管理制度
- 外贸汽车采购方案(3篇)
- 医疗机构制剂品种保密申报
- 【试卷】-《新能源汽车整车控制系统检修》课程考试试卷(闭卷)A卷
- 整本书阅读教学设计《田螺姑娘》
- 高速公路服务区发展调研报告
- 重大隐患判定标准培训课件
- 桥梁健康监测方案
- 华为公司知识管理
- 羽毛球培训项目实施方案
- 外观件批准报告AAR
- 福建省2022年6月普通高中学业水平合格性考试生物试卷(含答案)
- 幼儿园中班创意美术《甜甜圈》课件
评论
0/150
提交评论