版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.分式方程=1的解为()A.x=1 B.x=0 C.x=﹣ D.x=﹣12.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A. B. C. D.3.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm4.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=05.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°6.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.127.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.8.如图所示的几何体的左视图是()A. B. C. D.9.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42° B.28° C.21° D.20°10.函数中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空题(共7小题,每小题3分,满分21分)11.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.12.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.13.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.14.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.15.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.16.观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;…请按以上规律解答下列问题:(1)列出第5个等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值为_____.17.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.三、解答题(共7小题,满分69分)18.(10分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).19.(5分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.20.(8分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.21.(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.22.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.23.(12分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.24.(14分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,检验:当x=-时,(x+1)2≠0,故x=-是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.2、D【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.【详解】连接CD,如图:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故选D.【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.3、B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.4、D【解析】试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.考点:根的判别式;一元二次方程的定义.5、C【解析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.6、D【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.7、D【解析】
根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.8、A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.9、B【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【详解】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,
∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.【点睛】本题考查了圆的认识:掌握与圆有关的概念(
弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.10、B【解析】要使有意义,所以x+1≥0且x+1≠0,
解得x>-1.
故选B.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】
首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是19故答案为:19【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.12、【解析】【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【详解】如图,连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE==,故答案为.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.13、11【解析】
根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.【详解】有,Rt△ABD≌Rt△CDB,理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.故答案为:1;1.【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.14、或.【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角.故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形.因此,本题需要按以下两种情况分别求解.(1)当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位线,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位线,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.15、1【解析】
根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是15故答案为:15【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.16、49【解析】
(1)观察等式可得然后根据此规律就可解决问题;
(2)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)观察等式,可得以下规律:,∴(2)解得:n=49.故答案为:49.【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.17、5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x1,x2是方程x2-3x+2=0的两根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案为:5.三、解答题(共7小题,满分69分)18、(1)见解析;(2)【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积=S扇形ODE=.19、(1)EH2+CH2=AE2;(2)见解析.【解析】分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.详解:(1)EH2+CH2=AE2,如图1,过E作EM⊥AD于M,∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME与△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE与△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.20、(1)x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3)6≤x≤4.【解析】
(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-)2+(6≤x≤4).①当x=时,S有最大值,S最大=;②当x=4时,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x1=5,x2=1∴x的取值范围是5≤x≤4.21、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】
(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.22、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版工程勘察设计项目环境保护合同2篇
- 2024版物业服务管理长期合同
- 技术服务协议书集合
- 屋面防水补漏施工合同范本
- 2024诉讼委托代理合同(经济、民事案件)范文
- 关于设备合同转让协议书范本
- 全新设备合同模版完整版
- 提前终止租赁合同申请标准版 3篇
- 2024二手塑料制品买卖合同模板2篇
- 2024年度体育运动赛事组织与运营合同
- 野外工作安全应急预案
- 小学校园广播稿短篇红色故事(13篇)
- 城川民族干部学院培训学习心得体会
- 民盟入盟申请书
- 中职对口升学复习资料:《汽车机械基础》试题库+答案
- 供应商审核检查表(铸造类专用)
- 电大公共政策概论形考任务1-4答案
- 亲子阅读陪伴成长PPT
- 工程主要材料总需用量计划表(样表)
- 计算机网络地址解析协议ARP
- 石膏基础知识简介
评论
0/150
提交评论