2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案_第1页
2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案_第2页
2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案_第3页
2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案_第4页
2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案单选题(共100题)1、对高中数学的评价,下列说法错误的是()。A.重视对学生数学学习过程的评价B.正确评价学生的数学基础知识和基本技能C.重视对学生能力的评价D.实施促进学生发展的单一化评价【答案】D2、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112~159flD.MCH32~49pgE.MCHC0.32~0.36【答案】B3、高中数学学习评价关注学生知识技能的掌握,更关注数学学科()的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】A4、体内含铁最丰富的蛋白是A.白蛋白B.血红蛋白C.肌红蛋白D.铁蛋白E.球蛋白【答案】D5、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】B6、设随机变量X~N(0,1),X的的分布函数为φ(x),则P(|X|>2)的值为()A.2[1-φ(2)]B.2φ(2)-1C.2-φ(2)D.1-2φ(2)【答案】A7、Ⅱ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】C8、多发性骨髓瘤患者,血清中M蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA型B.IgD型C.轻链型D.不分泌型E.IgG型【答案】B9、高中数学学习评价关注学生知识技能的掌握,更关注数学学科()的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】A10、女性,20岁,头昏、乏力半年,近2年来每次月经持续7~8d,有血块。门诊检验:红细胞3.0×10A.缺铁性贫血B.溶血性贫血C.营养性巨幼细胞贫血D.再生障碍性贫血E.珠蛋白生成障碍性贫血【答案】A11、出生后,人类的造血干细胞的主要来源是A.胸腺B.骨髓C.淋巴结D.卵黄囊E.肝脏【答案】B12、解二元一次方程组用到的数学方法主要是()。A.降次B.放缩C.消元D.归纳【答案】C13、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多>30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】A14、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B15、有人称之谓“打扫战场的清道夫”的细胞是A.淋巴细胞B.中性粒细胞C.嗜酸性粒细胞D.单核细胞E.组织细胞【答案】D16、移植排斥反应属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】D17、正常情况下血液中不存在的是A.因子ⅢB.因子ⅤC.因子ⅠD.因子ⅩE.因子Ⅸ【答案】A18、淋巴细胞活力的表示常用A.活细胞占总细胞的百分比B.活细胞浓度C.淋巴细胞浓度D.活细胞与总细胞的比值E.白细胞浓度【答案】A19、属于所有T细胞共有的标志性抗原的是A.CD2B.CD3C.CD4D.CD8E.CD20【答案】B20、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】B21、女,20岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断为系统性红斑狼疮(SLE),下列可作为SLE特异性标志的自身抗体为A.抗DNP抗体和ANAB.抗dsDNA抗体和抗Sm抗体C.抗dsDNA抗体和ANAD.抗ssDNA抗体和抗ANAE.抗SSA抗体和抗核蛋白抗体【答案】B22、某女,30岁,乏力,四肢散在瘀斑,肝脾不大,血红蛋白45g/L,红细胞1.06×10A.粒细胞减少症B.AAC.巨幼红细胞贫血D.急性白血病E.珠蛋白生成障碍性贫血【答案】B23、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】B24、实验室常用的补体灭活方法是A.45℃,30minB.52℃,30minC.56℃,30minD.50℃,25minE.37℃,25min【答案】C25、疑似患有免疫增殖病,但仅检出少量的M蛋白时应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】C26、下列说法中不正确的是()。A.教学活动是教师单方面的活动,教师是学习的领导者B.评价既要关注学生学习的结果、也要重视学习的过程C.为了适应时代发展对人才培养的需要,新课程标准指出:义务教育阶段的数学教育要特别注重发展学生的应用意识和创新意识D.总体目标是义务教育阶段数学课程的终极目标,而学段目标则是总体目标的细化和学段化【答案】A27、再次免疫应答的主要抗体是A.IgGB.IgAC.IgMD.IgE.IgD【答案】A28、免疫标记电镜技术获得成功的关键是A.对细胞超微结构完好保存B.保持被检细胞或其亚细胞结构的抗原性不受损失C.选择的免疫试剂能顺利穿透组织细胞结构与抗原结合D.以上叙述都正确E.以上都不对【答案】D29、患者发热,巨脾,白细胞26×10A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】B30、《普通高中数学课程标准(2017年版2020年修订)》中明确提出的数学核心素养不包括()A.数据分析B.直观想象C.数学抽象D.合情推理【答案】D31、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】B32、患者,女,35岁。发热、咽痛1天。查体:扁桃体Ⅱ度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。血细菌培养发现A群B溶血性链球菌阳性,尿蛋白(++),尿红细胞(++)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是A.血清AS01200IU/mlB.血清肌酐18μmol/LC.血清BUN13.8mmol/LD.血清补体CE.尿纤维蛋白降解产物显著增高【答案】D33、《九章算数注》的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A34、男,17岁、发热、牙跟出血15d,化验检查:血红蛋白65g/L,白细胞2.2×10A.ITPB.AAC.急性白血病D.类白血病反应E.CML【答案】D35、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D36、冷球蛋白沉淀与复溶解的温度通常为A.-20℃,4℃B.-4℃,37℃C.-4℃,0℃D.0℃,37℃E.-20℃,37℃【答案】B37、红细胞镰状变形试验用于诊断下列哪种疾病A.HbFB.HbSC.HbHD.HbE.HbBArts【答案】B38、纤溶酶的生理功能下列哪项是错误的()A.降解纤维蛋白和纤维蛋白原B.抑制组织纤溶酶原激活物(t-PA)C.水解多种凝血因子D.使谷氨酸纤溶酶转变为赖氨酸纤溶酶E.水解补体【答案】B39、血小板膜糖蛋白Ⅱb/Ⅲa(GPⅡb/Ⅲa)复合物与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能【答案】B40、《义务教育课程次标准(2011年版)》“四基”中“数学的基本思想”,主要是:①数学抽象的思想;②数学推理的思想;③数学建模的思想。其中正确的是()。A.①B.①②C.①②③D.②③【答案】C41、下列选项中,哪一项血浆鱼精蛋白副凝固试验呈阳性A.肝病患者B.肾小球疾病C.晚期DICD.DIC的早、中期E.原发性纤溶症【答案】D42、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案】C43、下列说法错误的是()A.义务教育阶段的课程内容要反映社会的需求、数学的特点,要符合学生的认知规律B.有效的教学活动是学生学和教师教的统一C.教师教学要发挥主体作用,处理好讲授与学生自主学习的关系D.评价既要关注学生学习的结果,也要重视学习的过程【答案】C44、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】A45、下列哪种物质是血小板膜上的纤维蛋白原受体A.GPⅡb/ⅢaB.GPIVC.GPVD.GPb-复合物E.GPIa【答案】A46、男性,62岁,全身骨痛半年,十年前曾做过全胃切除术。体检:胸骨压痛,淋巴结、肝、脾无肿大。检验:血红蛋白量95g/L,白细胞数3.8×10A.恶性淋巴瘤B.骨质疏松症C.多发性骨髓瘤D.巨幼细胞性贫血E.骨髓转移癌【答案】C47、ATP存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】A48、贫血患者,轻度黄疸,肝肋下2cm。检验:血红蛋白70g/L,网织红细胞8%;血清铁14.32μmol/L(80μg/dl),ALT正常;Coombs试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】D49、在新一轮的数学教育改革中,逐渐代替了数学教学大纲,成为数学教育指导性文件的是()。A.数学教学方案B.数学课程标准C.教学教材D.数学教学参考书【答案】B50、《义务教育数学课程标准(2011年版)》提出,“数感”感悟的对象是()。A.数与量、数量关系、口算B.数与量、数量关系、笔算C.数与量、数量关系、简便运算D.数与量、数量关系、运算结果估计【答案】D51、αA.DIC,SLE,急性肾小球肾炎,急性胰腺炎B.慢性肾小球性疾病,肝病,炎性反应,自身免疫性疾病C.口服避孕药,恶性肿瘤,肝脏疾病D.血友病,白血病,再生障碍性贫血E.DIC,慢性肾小球疾病,肝脏疾病,急性胰腺炎【答案】A52、CD4A.50/μlB.100/μlC.200/μlD.500/μlE.1000/μl【答案】C53、男,45岁,因骨盆骨折住院。X线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占25%,血沉50mm/h,血红蛋白为80g/L,尿本周蛋白阳性,血清蛋白电泳呈现M蛋白,血清免疫球蛋白含量IgG8g/L、IgA12g/L、IgM0.2g/L。如进一步对该患者进行分型,则应为A.IgG型B.IgA型C.IgD型D.IgE型E.非分泌型【答案】B54、下面哪位不是数学家?()A.祖冲之B.秦九韶C.孙思邈D.杨辉【答案】C55、数学抽象是数学的基本思想,是形成理性思维的()。A.重要基础B.重要方式C.工具D.基本手段【答案】A56、标准定值血清可用来作为A.室间质控B.室内检测C.变异系数D.平均值E.标准差【答案】B57、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】B58、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。介导超急性排斥反应的主要物质是A.细胞毒抗体B.细胞毒T细胞C.NK细胞D.K细胞E.抗Rh抗体【答案】A59、Goodpasture综合征属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】B60、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条a,转动木条b,让学生观察,从而导入新课。这种导入方式属于()。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】B61、外源性凝血系统最常用的筛选试验是A.PTB.因子Ⅰ、Ⅴ、Ⅷ、ⅩⅢC.APTTD.FⅤA.FⅩA.CaE.因子Ⅱ、Ⅶ、Ⅸ、Ⅹ【答案】A62、在接触抗原后,T和B淋巴细胞增殖的主要场所是A.骨髓和淋巴结B.肝和淋巴结C.脾和淋巴结D.淋巴结E.卵黄囊和淋巴结【答案】C63、已知向量a与b的夹角为π/3,且|a|=1,|b|=2,若m=λa+b与n=2a-b互相垂直,则λ的为()。A.-2B.-1C.1D.2【答案】D64、下列关于数学思想的说法中,错误的一项是()A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】B65、血小板聚集诱导剂是A.血栓收缩蛋白B.ADP、血栓烷AC.αD.GPⅡb或GPⅠaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】B66、设随机变量X~N(0,1),X的的分布函数为φ(x),则P(|X|>2)的值为()A.2[1-φ(2)]B.2φ(2)-1C.2-φ(2)D.1-2φ(2)【答案】A67、创立解析几何的主要数学家是().A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】A68、细胞因子测定的首选方法是A.放射性核素掺入法B.NBT法C.ELISAD.MTT比色法E.RIA【答案】C69、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。兄弟间器官移植引起排斥反应的物质是A.异种抗原B.自身抗原C.异嗜性抗原D.同种异体抗原E.超抗原【答案】D70、祖冲之的代表作是()。A.《海岛算经》B.《数书九章》C.《微积分》D.《缀术》【答案】D71、《普通高中数学课程标准(实验)》设置了四个选修系列,其中选修系列l是为希望在人文社会科学等方面发展学生而设置的,下列内容不属于选修系列1的是()。A.矩阵变换B.推理证明C.导数及应用D.常用逻辑用语【答案】A72、使用口服抗凝剂时PT应维持在A.正常对照的1.0~1.5倍B.正常对照的1.5~2.0倍C.正常对照的2.0~2.5倍D.正常对照的2.5~3.0倍E.正常对照的3倍以上【答案】B73、《义务教育数学课程标准(2011年版)》提出,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和()A.探索性学习B.合作交流C.模型思想D.综合与实践【答案】C74、与意大利传教士利玛窦共同翻译了《几何原本》(I—Ⅵ卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A75、()是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】B76、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下3.0cm,肝肋下1.5cm。检验:血红蛋白量150g/L,血小板数1100×10A.慢性中性粒细胞白血病B.骨髓增生性疾病C.原发性血小板增多症D.慢性粒细胞白血病E.继发性血小板增多症【答案】C77、经台盼兰染色后,活细胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】B78、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】B79、男,45岁,因骨盆骨折住院。X线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占25%,血沉50mm/h,血红蛋白为80g/L,尿本周蛋白阳性,血清蛋白电泳呈现M蛋白,血清免疫球蛋白含量IgG8g/L、IgA12g/L、IgM0.2g/L。该患者最可能的临床诊断是A.一过性单克隆丙种球蛋白病B.持续性多克隆丙种球蛋白病C.多发性骨髓瘤D.冷球蛋白血症E.原发性巨球蛋白血症【答案】C80、设f(x)=acosx+bsinx是R到R的函数,V={f(x)|f(x)=acosx+bsinx,a,b∈R}是线性空间,则V的维数是()。A.1B.2C.3D.∞【答案】B81、男,45岁,因骨盆骨折住院。X线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占25%,血沉50mm/h,血红蛋白为80g/L,尿本周蛋白阳性,血清蛋白电泳呈现M蛋白,血清免疫球蛋白含量IgG8g/L、IgA12g/L、IgM0.2g/L。该患者最可能的临床诊断是A.一过性单克隆丙种球蛋白病B.持续性多克隆丙种球蛋白病C.多发性骨髓瘤D.冷球蛋白血症E.原发性巨球蛋白血症【答案】C82、数学的三个基本思想不包括()。A.建模B.抽象C.猜想D.推理【答案】C83、已知随机变量X服从正态分布X(μ,σ2),假设随机变量Y=2X-3,Y服从的分布是()A.N(2μ-3,2σ2-3)B.N(2μ-3,4σ2)C.N(2μ-3,4σ2+9)D.N(2μ-3,4σ2-9)【答案】B84、女性,26岁,2年前因头昏乏力、面色苍白就诊。粪便镜检找到钩虫卵,经驱虫及补充铁剂治疗,贫血无明显改善。近因症状加重而就诊。体检:中度贫血貌,肝、脾均肋下2cm。检验:血红蛋白85g/L,网织红细胞5%;血清胆红素正常;骨髓检查示红系明显增生,粒红比例倒置,外铁(+++),内铁正常。B超显示胆石症。最可能的诊断是A.缺铁性贫血B.铁幼粒细胞贫血C.溶血性贫血D.巨幼细胞贫血E.慢性炎症性贫血【答案】C85、男性,62岁,全身骨痛半年,十年前曾做过全胃切除术。体检:胸骨压痛,淋巴结、肝、脾无肿大。检验:血红蛋白量95g/L,白细胞数3.8×10A.恶性淋巴瘤B.骨质疏松症C.多发性骨髓瘤D.巨幼细胞性贫血E.骨髓转移癌【答案】C86、中学数学的()是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。A.教学标准B.教学大纲C.教学策略D.教学模式【答案】D87、Ⅰ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】A88、Grave病的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】D89、“矩形”和“菱形”概念之间的关系是()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B90、DIC时血小板计数一般范围是A.(100~300)×10B.(50~100)×10C.(100~300)×10D.(100~300)×10E.(100~250)×10【答案】B91、原红与原粒的区别时,不符合原红的特点的是()A.胞体大,可见突起B.染色质粗粒状C.核仁暗蓝色,界限模糊D.胞浆呈均匀淡蓝色E.胞核圆形、居中或稍偏于一旁【答案】D92、外周血三系减少,而骨髓增生明显活跃,下列哪一项与此不符()A.巨幼红细胞性贫血B.再障C.颗粒增多的早幼粒细胞白血病D.阵发性睡眠性蛋白尿E.以上都符合【答案】B93、免疫球蛋白含量按由多到少的顺序为A.IgG,IgM,IgD,IgE,IgAB.IgG,IgA,IgM,lgD,IgEC.lgG,IgD,lgA,IgE,IgMD.IgD,IgM,IgG,IgE,IgAE.IgG,IgM,IgD,IgA,IgE【答案】B94、血小板生存期缩短见于下列哪种疾病A.维生素K缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E."蚕豆病"【答案】B95、下列哪一项不是影响初中数学课程的主要因素()。A.数学学科内涵B.社会发展现状C.学生心理特怔D.教师的努力程度【答案】D96、适应性免疫应答A.具有特异性B.时相是在感染后数分钟至96hC.吞噬细胞是主要效应细胞D.可遗传E.先天获得【答案】A97、关于过敏性紫癜正确的是A.多发于中老年人B.单纯过敏性紫癜好发于下肢、关节周围及臀部C.单纯过敏性紫癜常呈单侧分布D.关节型常发生于小关节E.不会影响肾脏【答案】B98、最早使用“函数”(function)这一术语的数学家是()。A.约翰·贝努利B.莱布尼茨C.雅各布·贝努利D.欧拉【答案】B99、有限小数与无限不循环小数的关系是()。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】A100、下列命题不正确的是()。A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】D大题(共20题)一、以《普通高中课程标准实验教科书·数学1》(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】二、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】三、在学习《有理数的加法》一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。四、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】五、推理一般包括合情推理与演绎推理。(1)请分别阐述合情推理与演绎推理的含义;(6分)(2)举例说明合情推理与演绎推理在解决数学问题中的作用(6分),并阐述两者之间的关系。(3分)【答案】本题主要考查合情推理与演绎推理的概念及关系。六、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。七、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28℃,l月份的平均气温是零下3℃,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28℃减去零下3℃,得到的答案是31℃。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28℃,我们常说成28℃,可用28表示,但是零下3℃不能说成3℃呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c℃。这时,零下3℃就可写成-3℃,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识——负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。①学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。②内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。③数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。④实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。八、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】九、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。一十、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。一十一、以《普通高中课程标准实验教科书·数学1》(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】一十二、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】一十三、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。一十四、在弧度制的教学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论