![数学模型概论_第1页](http://file4.renrendoc.com/view/e1adfe619dff26b8ac24033bec9ed357/e1adfe619dff26b8ac24033bec9ed3571.gif)
![数学模型概论_第2页](http://file4.renrendoc.com/view/e1adfe619dff26b8ac24033bec9ed357/e1adfe619dff26b8ac24033bec9ed3572.gif)
![数学模型概论_第3页](http://file4.renrendoc.com/view/e1adfe619dff26b8ac24033bec9ed357/e1adfe619dff26b8ac24033bec9ed3573.gif)
![数学模型概论_第4页](http://file4.renrendoc.com/view/e1adfe619dff26b8ac24033bec9ed357/e1adfe619dff26b8ac24033bec9ed3574.gif)
![数学模型概论_第5页](http://file4.renrendoc.com/view/e1adfe619dff26b8ac24033bec9ed357/e1adfe619dff26b8ac24033bec9ed3575.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学模型概论1、什么是数学建模3、数学建模的方法和步骤2、建模示例椅子能在不平的地面上放稳吗玩具、照片…~实物模型风洞中的飞机…~物理模型地图、电路图…~符号模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物。模型集中反映了原型中人们需要的那一部分特征。我们常见的模型什么是数学模型你碰到过的数学模型——“航行问题”用x表示船速,y表示水速,列出方程:求解得到x=20,y=5,答:船速每小时20公里航行问题建立数学模型的基本步骤
作出简化假设(船速、水速为常数);
用符号表示有关量(x,y表示船速和水速);
用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);
求解得到数学解答(x=20,y=5);
回答原问题(船速每小时20公里)。数学模型
(MathematicalModel)和数学建模(MathematicalModeling)数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学建模:建立数学模型的全过程(包括建立、求解、分析、检验)。数学建模的重要意义
电子计算机的出现及飞速发展
数学以空前的广度和深度向一切领域渗透数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。数学建模计算机技术如虎添翼知识经济椅子能在不平的地面上放稳吗问题分析模型假设通常~三只脚着地放稳~四只脚着地
四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;
地面高度连续变化,可视为数学上的连续曲面;
地面相对平坦,使椅子在任意位置至少三只脚同时着地。建模示例1模型构成用数学语言把椅子位置和四只脚着地的关系表示出来
椅子位置利用正方形(椅脚连线)的对称性xBADCOD´C´B´A´用(对角线与x轴的夹角)表示椅子位置
四只脚着地距离是的函数四个距离(四只脚)A,C两脚与地面距离之和~f()B,D两脚与地面距离之和~g()两个距离椅脚与地面距离为零正方形ABCD绕O点旋转正方形对称性用数学语言把椅子位置和四只脚着地的关系表示出来f(),g()是连续函数对任意,f(),g()至少一个为0数学问题已知:f(),g()是连续函数;
对任意,f()•g()=0;
且g(0)=0,f(0)>0.证明:存在0,使f(0)=g(0)=0.模型构成地面为连续曲面
椅子在任意位置至少三只脚着地模型求解给出一种简单、粗造的证明方法将椅子旋转900,对角线AC和BD互换。由g(0)=0,f(0)>0,知f(/2)=0,g(/2)>0.令h()=f()–g(),则h(0)>0和h(/2)<0.由f,g的连续性知
h为连续函数,据连续函数的基本性质,必存在0,使h(0)=0,即f(0)=g(0).因为f()•g()=0,所以f(0)=g(0)=0.评注和思考建模的关键~假设条件的本质与非本质考察四脚呈长方形的椅子和f(),g()的确定
二、数学建模的一般方法和步骤建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:◆机理分析◆测试分析方法机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致可见右图。符合实际不符合实际交付使用,从而可产生经济、社会效益实际问题抽象、简化、假设确定变量、参数建立数学模型并数学、数值地求解、确定参数用实际问题的实测数据等来检验该数学模型建模过程示意图
模型
数学模型的分类:◆按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩散模型等。◆按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。三、数学模型及其分类数学模型类型
确定-随机静态-动态
线性-非线
离散-连续3、双层玻璃的功效北方城镇的有些建筑物的窗户是双层的,即窗户上装两层厚度为的玻璃夹着一层厚度为的空气,如左图所示,据说这样做是为了保暖,即减少室内向室外的热量流失。我们要建立一个模型来描述热量通过窗户的热传导(即流失)过程,并将双层玻璃窗与用同样多材料做成的单层玻璃窗(如右图,玻璃厚度为)的热量传导进行对比,对双
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园亲子放风筝活动方案
- 2025年无功功率自动补偿装置项目发展计划
- 室外冬季瓷砖施工方案设计
- 大学生身边有哪些创业项目
- 大学生创新创业项目安徽省
- 入团申请书班级姓名
- 大学生创业可以做哪些项目
- 外门窗更换冬季施工方案
- 云南财经大学生创业项目
- 退社申请书3000字
- 墨香里的年味儿(2023年辽宁沈阳中考语文试卷记叙文阅读题及答案)
- 外研版小学五年级上册英语阅读理解专项习题
- 2024-2030年市政工程行业发展分析及投资战略研究报告
- 高中数学教学方法都有哪些
- 高中二年级下学期数学《导数在不等式恒成立问题中的应用》课件
- 济宁医学院成人高等教育期末考试《无机化学》复习题
- 汽车驾驶员高级工题库与答案
- 《网络安全防护项目教程》课件项目4 数据库安全防护
- 手术室标本管理及送检评分标准
- 新概念英语第二册考评试卷含答案(第73-80课)
- 《物流无人机垂直起降场选址与建设规范(征求意见稿)》
评论
0/150
提交评论