版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则的最小值为()A. B. C. D.2.如果,那么下列不等式成立的是()A. B.C. D.3.若函数有两个极值点,则实数的取值范围是()A. B. C. D.4.已知复数满足:(为虚数单位),则()A. B. C. D.5.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.6.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.7.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件8.tan570°=()A. B.- C. D.9.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.10.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.11.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加12.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.14.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.15.设、、、、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为__________.16.已知函数在上单调递增,则实数a值范围为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.18.(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.19.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.(Ⅰ)证明:平面;(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.20.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.21.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.22.(10分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.2.D【解析】
利用函数的单调性、不等式的基本性质即可得出.【详解】∵,∴,,,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.3.A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.4.A【解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.5.D【解析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.6.B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.7.D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.8.A【解析】
直接利用诱导公式化简求解即可.【详解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故选:A.【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.9.B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.10.C【解析】
根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.11.D【解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.12.D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.14.【解析】
由题意可设,,,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得不大于.【详解】解:,且,可设,,,,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:.【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题.15.【解析】
根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本不等式求得体积的最大值.【详解】由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积,当且仅当时等号成立.故答案为:【点睛】本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题.16.【解析】
由在上恒成立可求解.【详解】,令,∵,∴,又,,从而,令,问题等价于在时恒成立,∴,解得.故答案为:.【点睛】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.【详解】(1)由题知,,所以,因此动点的轨迹是以,为焦点的椭圆,又知,,所以曲线的标准方程为.又由题知,所以,所以,又因为点在抛物线上,所以,所以抛物线的标准方程为.(2)设,,由题知,所以,即,所以,又因为,,所以,所以为定值,且定值为1.【点睛】本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题.18.(1)(2)【解析】
(1)设,根据直线的斜率公式即可求解;(2)设直线的方程为,联立直线与抛物线方程,由韦达定理得,,结合直线的斜率公式得到,换元后讨论的符号,求最值可求解.【详解】(1)设,因为,即直线的斜率为1.(2)显然直线的斜率存在,设直线的方程为.联立方程组,可得则,令,则则当时,;当且仅当,即时,解得时,取“=”号,当时,;当时,综上所述,当时,取得最大值,此时直线的方程是.【点睛】本题主要考查了直线的斜率公式,直线与抛物线的位置关系,换元法,均值不等式,考查了运算能力,属于难题.19.(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明;(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.【详解】(Ⅰ)如图,连接,交于点M,连接ME,则.因为平面,平面,所以平面.(Ⅱ)因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离.如图,设O是AC的中点,连接,OB.因为为正三角形,所以,又平面平面,平面平面,所以平面ABC.所以点到平面ABC的距离,故三棱锥的体积为.而斜三棱柱的体积为.所以剩余部分的体积为.【点睛】本题考查证明线面平行,计算体积,意在考查推理证明,空间想象能力,计算能力,属于中档题型,一般证明线面平行的方法1.证明线线平行,则线面平行,2.证明面面平行,则线面平行,关键是证明线线平行,一般构造平行四边形,则对边平行,或是构造三角形中位线.20.(1)证明见解析;(2).【解析】
(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,,然后,证明相应的线面垂直关系,分别以,,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又平面,平面,所以平面.解:(2)在图2中,取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年钢结构用H型钢项目资金筹措计划书
- 2024年PM步进电机项目投资申请报告代可行性研究报告
- 小学阅读提升课模板
- 山西工程科技职业大学《工业机器人及应用》2023-2024学年第一学期期末试卷
- 现代教育问题解析模板
- 员工培训课程
- 山西传媒学院《人员招聘与配置》2023-2024学年第一学期期末试卷
- 山西财贸职业技术学院《产业经济学》2023-2024学年第一学期期末试卷
- 山西财经大学《植物合成生物学》2023-2024学年第一学期期末试卷
- 山东中医药高等专科学校《数据结构Ⅰ》2023-2024学年第一学期期末试卷
- 未来当兵职业生涯规划书
- 自动控制原理及应用知到智慧树章节测试课后答案2024年秋新疆工程学院
- 带状疱疹中医护理
- 生物脊椎动物(鱼)课件-2024-2025学年人教版生物七年级上册
- 光伏电站风险评估与应对措施
- 浙江省杭州市拱墅区2023-2024学年六年级(上)期末数学试卷
- 2025蛇年元旦蛇年新年晚会模板
- 幼儿园教育活动设计与指导学习通超星期末考试答案章节答案2024年
- 突发事件及自救互救学习通超星期末考试答案章节答案2024年
- 燃气经营安全重大隐患判定标准课件
- 伟大的《红楼梦》智慧树知到期末考试答案章节答案2024年北京大学
评论
0/150
提交评论