数学建模一周_第1页
数学建模一周_第2页
数学建模一周_第3页
数学建模一周_第4页
数学建模一周_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章建立数学模型1.1从现实对象到数学模型1.2数学建模的重要意义1.3数学建模示例1.4数学建模的方法和步骤1.5数学模型的特点和分类1.6怎样学习数学建模玩具、照片、飞机、火箭模型……~实物模型水箱中的舰艇、风洞中的飞机……~物理模型地图、电路图、分子结构图……~符号模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物模型集中反映了原型中人们需要的那一部分特征1.1

从现实对象到数学模型我们常见的模型你碰到过的数学模型——“航行问题”用x

表示船速,y表示水速,列出方程:答:船速每小时20千米/小时.甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?x=20y=5求解航行问题建立数学模型的基本步骤

作出简化假设(船速、水速为常数);

用符号表示有关量(x,y表示船速和水速);

用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);

求解得到数学解答(x=20,y=5);

回答原问题(船速每小时20千米/小时)。数学模型(MathematicalModel)和数学建模(MathematicalModeling)对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型数学建模1.2

数学建模的重要意义时代特点:2、数学以空前的广度和深度向一切领域渗透。数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。

在一般工程技术领域数学建模仍然大有用武之地;

在高新技术领域数学建模几乎是必不可少的工具;

数学进入一些新领域,为数学建模开辟了许多处女地。1、电子计算机的出现及飞速发展数学建模的具体应用

分析与设计

预报与决策

控制与优化

规划与管理数学建模计算机技术知识经济如虎添翼1.3.1例1高跟鞋问题女孩子都爱美,你知道你穿鞋跟多高的鞋子看起来最美吗?1.3

数学建模示例穿高跟鞋是为了身高在视觉上得到增加,但是身高越高看起来越美吗?理解问题由黄金分割原理,我们不妨假定,当人的下肢和身高的比为0.618时,看起来最美。合理化假设设某人身高为h厘米,下肢长l厘米,高跟鞋的鞋跟为x厘米。转化为数学问题穿上高跟鞋后,身高为h+x厘米,下肢长l+x厘米。得到一个关于x的一次方程:问题的求解解该一次方程,得:问题的检验以身高168CM,下肢长为102CM的人为例,其所穿鞋的鞋跟高度与好看程度的关系可由下表说明:原比(l/h)身高(cm)鞋跟高度(cm)新比值0.60710.60710.60710.60711681681681682.53.554.54.77480.61290.61510.61730.618问题的检验又如,按照上述模型,身高153CM,下肢长为92CM的女士,应穿鞋跟高为6.6CM的高跟鞋显得比较美。评价和应用由此看来,女孩们爱穿高跟鞋是有科学依据的,也使人联想到为什么人们观看芭蕾舞的时候有一种美的感受,可当你看踩高翘表演时就没有这种感觉。这下女生知道应该如何选择合适的高跟鞋了吧!1.3.2

如何最省料?问题:现要用100*50厘米的板料裁剪出规格为40*40厘米与50*20的零件,前者需要25件,后者需要30件,问如何裁剪才能最省料?解:先设计几个裁剪方案,如图在100*50的板料上可裁剪出两块40*40厘米的零件盒一块50*20厘米的零件(图中分别用A,B,C表示),或一块40*40厘米的零件盒三块50*20厘米的零件,或五块50*20厘米的零件。显然,若只用其中一个方案,都不是最省料的方法,最佳方法应该是三个方案的优化组合。设方案i使用原材料(Xi=1,2,3),共用原材料f件,则根据题意,可用如下数学式子表示:背景

年1625183019301960197419871999人口(亿)5102030405060世界人口增长概况中国人口增长概况

年19081933195319641982199019952000人口(亿)3.04.76.07.210.311.312.013.0研究人口变化规律控制人口过快增长1.3.3如何预报人口的增长指数增长模型——马尔萨斯提出(1798)常用的计算公式x(t)~时刻t的人口基本假设

:人口(相对)增长率r

是常数今年人口x0,年增长率rk年后人口随着时间增加,人口按指数规律无限增长指数增长模型的应用及局限性

与19世纪以前欧洲一些地区人口统计数据吻合

适用于19世纪后迁往加拿大的欧洲移民后代

可用于短期人口增长预测

不符合19世纪后多数地区人口增长规律

不能预测较长期的人口增长过程19世纪后人口数据人口增长率r不是常数(逐渐下降)阻滞增长模型(Logistic模型)人口增长到一定数量后,增长率下降的原因:资源、环境等因素对人口增长的阻滞作用且阻滞作用随人口数量增加而变大假设r~固有增长率(x很小时)xm~人口容量(资源、环境能容纳的最大数量)r是x的减函数dx/dtx0xmxm/2xmtx0x(t)~S形曲线,x增加先快后慢x0xm/2阻滞增长模型(Logistic模型)参数估计用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数r或r,xm

利用统计数据用最小二乘法作拟合例:美国人口数据(单位~百万)186018701880……196019701980199031.438.650.2……179.3204.0226.5251.4专家估计阻滞增长模型(Logistic模型)r=0.2557,xm=392.1模型检验用模型计算2000年美国人口,与实际数据比较实际为281.4(百万)模型应用——预报美国2010年的人口加入2000年人口数据后重新估计模型参数Logistic模型在经济领域中的应用(如耐用消费品的售量)阻滞增长模型(Logistic模型)r=0.2490,xm=434.0x(2010)=306.01.3.4崖高的估算假如你站在崖顶且身上带着一只具有跑表功能的计算器,你也许会出于好奇心想用扔下一块石头听回声的方法来估计山崖的高度,假定你能准确地测定时间,你又怎样来推算山崖的高度呢,请你分析一下这一问题。我有一只具有跑表功能的计算器。方法一假定空气阻力不计,可以直接利用自由落体运动的公式来计算。例如,设t=4秒,g=9.81米/秒2,则可求得h≈78.5米。我学过微积分,我可以做得更好,呵呵。

除去地球吸引力外,对石块下落影响最大的当属空气阻力。根据流体力学知识,此时可设空气阻力正比于石块下落的速度,阻力系数K为常数,因而,由牛顿第二定律可得:

令k=K/m,解得

代入初始条件v(0)=0,得c=-g/k,故有

再积分一次,得:

若设k=0.05并仍设t=4秒,则可求得h≈73.6米。

听到回声再按跑表,计算得到的时间中包含了反应时间

进一步深入考虑不妨设平均反应时间为0.1秒,假如仍设t=4秒,扣除反应时间后应为3.9秒,代入式①,求得h≈69.9米。

①多测几次,取平均值再一步深入考虑代入初始条件h(0)=0,得到计算山崖高度的公式:

将e-kt用泰勒公式展开并令k→0+

,即可得出前面不考虑空气阻力时的结果。还应考虑回声传回来所需要的时间。为此,令石块下落的真正时间为t1,声音传回来的时间记为t2,还得解一个方程组:这一方程组是非线性的,求解不太容易,为了估算崖高竟要去解一个非线性主程组似乎不合情理

相对于石块速度,声音速度要快得多,我们可用方法二先求一次

h,令t2=h/340,校正t,求石块下落时间t1≈t-t2将t1代入式①再算一次,得出崖高的近似值。例如,若h=69.9米,则t2≈0.21秒,故t1≈3.69秒,求得h≈62.3米。

数学建模的基本方法机理分析测试分析根据对客观事物特性的认识,找出反映内部机理的数量规律将对象看作“黑箱”,通过对量测数据的统计分析,找出与数据拟合最好的模型机理分析没有统一的方法,主要通过实例研究(CaseStudies)来学习。以下建模主要指机理分析。二者结合用机理分析建立模型结构,用测试分析确定模型参数1.4

数学建模的方法和步骤

数学建模的一般步骤模型准备模型假设模型构成模型求解模型分析模型检验模型应用模型准备了解实际背景明确建模目的搜集有关信息掌握对象特征形成一个比较清晰的‘问题’模型假设针对问题特点和建模目的作出合理的、简化的假设在合理与简化之间作出折中模型构成用数学的语言、符号描述问题发挥想像力使用类比法尽量采用简单的数学工具

数学建模的一般步骤模型求解各种数学方法、软件和计算机技术如结果的误差分析、统计分析、模型对数据的稳定性分析模型分析模型检验与实际现象、数据比较,检验模型的合理性、适用性模型应用

数学建模的一般步骤数学建模的全过程现实对象的信息数学模型现实对象的解答数学模型的解答表述求解解释验证(归纳)(演绎)表述求解解释验证根据建模目的和信息将实际问题“翻译”成数学问题选择适当的数学方法求得数学模型的解答将数学语言表述的解答“翻译”回实际对象用现实对象的信息检验得到的解答实践现实世界数学世界理论实践1.5

数学模型的特点和分类模型的逼真性和可行性模型的渐进性模型的强健性模型的可转移性模型的非预制性模型的条理性模型的技艺性模型的局限性

数学模型的特点数学模型的分类应用领域人口、交通、经济、生态……数学方法初等数学、微分方程、规划、统计……表现特性描述、优化、预报、决策……建模目的了解程度白箱灰箱黑箱确定和随机静态和动态线性和非线性离散和连续1.6怎样学习数学建模数学建模与其说是一门技术,不如说是一门艺术技术大致有章可循艺术无法归纳成普遍适用的准则想像力洞察力判断力

学习、分析、评价、改进别人作过的模型

亲自动手,认真作几个实际题目课程要求

三个相同专业的人组成一队,选取一个数学建模教材中训练题或与所学专业有关的建模问题,按数学建模竞赛形式进行数学建模实践,按照教材中论文书写格式要求就所研究问题提交数学建模论文一份

第二章初等模型2.1公平的席位分配2.2录像机计数器的用途2.3双层玻璃窗的功效2.4汽车刹车距离2.5划艇比赛的成绩2.6实物交换2.7核军备竞赛2.8启帆远航2.9量纲分析与无量纲化第三章简单的优化模型3.1

存贮模型3.2

生猪的出售时机3.3

森林救火3.4

最优价格3.5血管分支3.6消费者均衡3.7冰山运输第四章数学规划模型

4.1奶制品的生产与销售4.2

自来水输送与货

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论