




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
mechanicalengineeringAnintroductionto1Lecturer:LiuJu-rongCHAPTER4ForcesinStructuresOVERVIEW1FORCESANDRESULTANTS23MOMENTOFAFORCE
2EQUILIBRIUMOFFORCESANDMOMENTS4Vocabulary3Mechanics力学neteffect净效应leverarm杆臂Quadrant象限Bracket支架Protractor量角器Eyebolt吊环螺栓pivotpoint支点Particle质点RigidBody刚体FreeBodyDiagram自由体受力图boldfacenotation粗体字的标识1OVERVIEW4Mechanicalengineersusemathematicsandphysicallawstodesignhardwarebetterandfasterthanwouldbepossibleotherwise.Byapplyingtheprincipleofforcebalance,forinstance,anengineercanoftenanalyzeadesigntoareasonablelevelofaccuracybeforeanyhardwareisbuilt.Engineersreducethetimeandexpenseassociatedwithconstructingandtestingprototypesbyfirstrefiningtheirdesignsonpaper.Computer-aidedengineeringtoolsfurtherincreasethelevelofsophisticationthatisavailableforsuchanalyses.1OVERVIEW---Theabilitytobeavailableinthischapter5Afterstudy,whatshouldyoubeabletohave?Describeaforceintermsofitsrectangularandpolarcomponents.Calculatetheresultantofasystemofforcesbyusingthevectoralgebraandpolygonmethods.Calculatethemomentofaforceaboutapointusingtheperpendicularleverarmandmomentcomponentmethods.Understandtherequirementsforequilibrium,andcalculateunknownforces.Explainthedifferencebetweenlaminarandturbulentflowingfluids.CalculateanddescribethedimensionlessReynoldsandMachnumbers.Discussthefluidforcesknownasbuoyancy,drag,andlift,andcalculatethemincertainapplication.1OVERVIEW6FINGURE4.1Heavyconstructionequipmentisdesignedtosupportthelargeforcesdevelopedduringoperation.Source:ReprintedwithpermissionofmechanicalDynamics,Incorporated,andbyCaterpillarIncorporated.2FORCESANDRESULTANTS---RectangularandPolarForms
Whatisvectornotation?
Rectangularcomponents7Inthistextbook,wewilluseboldfacenotation--F--todenoteforcevectors.Acommonmethodtodescribeaforceisintermsofitshorizontalandverticalcomponents.TheprojectionofFinthehorizontaldirection(thexRectangularaxis)iscalledFx,andtheverticalprojection(yaxis)iscalledFy.Infact,thepairofnumbers(Fx,Fy)isjustthecoordinatesoftheforcevector'stip.2FORCESANDRESULTANTS---RectangularandPolarForms
Unitvectors8theunitvectorsiandjareusedtoindicatethedirectionsinwhichFxandFyact.Vectoripointsalongthepositivexdirection,andjisavectorpointinginthepositiveydirection.F=Fxi+FyjFINGURE4.2Representingaforcevectorintermsofitsrectangularcomponents(Fx,Fy),anditspolarcomponents(F,θ).2FORCESANDRESULTANTS---RectangularandPolarForms
polarcomponentsVectormagnitude9Thelatterviewpointisbasedonpolarcoordinates.AsalsoshowninFigure,Factsattheangleθ,whichismeasuredrelativetothehorizontalaxis.Themagnitudeorlengthoftheforcevectorisascalarquantity,anditisdenotedbyF=|F|,wherethe|·|notationdesignatesthevector'sabsolutevalue.VectordirectionInsteadofspecifyingFxandFy,wecannowviewVectordirectiontheforcevectorFintermsofthequantitiesFandθ.Fx=FcosθandFy=Fsinθ
2FORCESANDRESULTANTS---RectangularandPolarForms10FINGURE4.3Determiningtheangleofactionforaforcethat(a)liesinthefirstquadrantand(b)liesinthesecondquadrant.2FORCESANDRESULTANTS---Resultants
Forcesystem11Aforcesystemisacollectionofseveralforcesthatsimultaneouslyactonanobject.WithNindividualforcesdenotedbyFi(i=1,2,…,N),theyaresummedaccordingtobyusingtherulesofvectoralgebra.Resultant2FORCESANDRESULTANTS---Resultants
vectoralgebramethod12Inthistechnique,eachforceFiisbrokendownintoitshorizontalandverticalcomponents,whichwelabelasFxiandFyifortheit’sforce.Theresultant'shorizontalcomponentRxisfoundbyLikewise,weseparatelysumtheverticalcomponentsthroughTheresultantforceisthenexpressedasR=Rxi+Ryj.IfweareinterestedinthemagnitudeRanddirectionθofR,weapplytheexpressions2FORCESANDRESULTANTS---Resultants
VectorpolygonMethod----head–to–tailrule13Alternatively,theresultantofaforcesystemcanbefoundbysketchingapolygontorepresentadditionoftheFivectors.Themagnitudeanddirectionoftheresultantarethendeterminedbyapplyingrulesoftrigonometrytothepolygon'sgeometry.ReferringtothemountingpostofFigure4.4,thevectorpolygonforthosethreeforcesisdrawnbyaddingtheindividualFi'sinachainHead-to-tail(头尾相接)ruleaccordingtothehead-to-tailrule.2FORCESANDRESULTANTS---Resultants14FINGURE4.4Amountingpostandbracketthatareloadedbythreeforces.FINGURE4.5ThebracketRextendsfromthestarttotheendofthechainformedbyaddingF1,F2andF3together3MOMENTOFAFORCE---perpendicularleverarm15Thetermtorquecanalsobeusedtodescribetheeffectaforceactingoveraleverarm,butmechanicalengineersgenerallyreservetorquetodescribemomentsthatcauserotationofashaftinamotor,engine,orgearbox.
ThemagnitudeofamomentisfoundfromitsdefinitionMo=Fdanddistheperpendicularleverarmdistancefromtheforce'slineofactiontopointO.
momentmagnitude
leverarm
torque3MOMENTOFAFORCE---perpendicularleverarm16theunitforMoistheproductofforceanddistance.Infact,Fcouldbeappliedtothebracketatanypointalongitslineofaction,andthemomentproducedaboutOwouldremainunchangedbecausedwouldlikewisenotchange.MomentunitsLineofaction3MOMENTOFAFORCE---momentcomponents17Wefirstchoosethefollowingsignconvention:Amomentthatisdirectedclockwiseispositive,andacounterclockwisemomentisnegative.Thesignconventionisjustabookkeepingtoolforcombiningthevariousclockwiseandcounterclockwisemomentcomponents.Signconvection3MOMENTOFAFORCE---momentcomponents18FINGURE4.11Calculatingmomentsbasedoncomponents.(a)BothFxandFycreateclockwisemomentsaboutpointO.(b)Fxexertsaclockwisemoment,butFyexertsacounterclockwisemoment.3MOMENTOFAFORCE---momentcomponents19Regardlessofwhichmethodyouusetocalculateamoment,whenreportinganansweryoushouldstate(1)thenumericalmagnitudeofthemoment,(2)theunits,and(3)thedirection.(CWorCCW)Inthegeneralcaseofthemomentcomponentsmethod,wewriteMo=±Fx∆y±Fy∆x20thephysicaldimensionsoftheobjectareunimportantincalculatingforces.thelength,width,andbreadthofanobjectareimportantfortheproblemathand.particlerigidbody4EQUILIBRIUMOFFORCESANDMOMENTS--ParticlesandRigidBodies21Aparticleisinequilibriumiftheforcesactingonitbalancewithzeroresultant.Becauseforcescombineasvectors,theresultantmustbezerointwoperpendiculardirections,whichwelabelxandy:Forarigidbodytobeinequilibrium,itisnecessarythat(1)theresultantofallforcesiszero,and
(2)thenetmomentisalsozero.ForcebalanceMomentbalance4EQUILIBRIUMOFFORCESANDMOMENTS--ParticlesandRigidBodies∑Fxi=0and∑Fyi=0∑Fxi=0and∑Fyi=0∑Moi=0Itisnotpossibletoobtainmoreindependentequationsofequilibriumbyresolvingmomentsaboutanalternativepointorbysummingforcesindifferentdirections.22Freebodydiagrams(abbreviatedFBD)aresketchesusedtoanalyzetheforcesandmomentsthatactonstructuresandmachines,andtheirconstructionisanimportantskill.TheFBDisusedtoidentifythemechanicalsystemthatisbeingexaminedandtorepresentalloftheknownandunknownforcesthatarepresent.FBD4EQUILIBRIUMOFFORCESANDMOMENTS–Freebodydiagrams23thephysicaldimensionsoftheobjectareunimportantincalculatingforces.thelength,width,andbreadthofanobjectareimportantfortheproblemathand.particlerigidbody4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams24ThreemainstepsarefollowedwhenaFBDisdrawn:3.Inthefinalstep,allforcesandmomentsaredrawnandlabeled.2.Thecoordinatesystemisdrawnnexttoindicatethepositivesignconventionsforforcesandmoments.1.Selectanobjectthatwillbeanalyzedbyusingtheequilibriumequations.Imaginethatadottedlineisdrawnaroundtheobject,andnotehowthelinewouldcutthroughandexposevariousforces.4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams25SOLUTION(a)ThefreebodydiagramofthebuckleisshowninFigure4.15(b).Thexycoordinatesystemisalsodrawntoindicateoursignconventionforthepositivehorizontalandverticaldirections.Threeforcesactonthebuckle:thetwogiven300-1bforcesandtheunknownforceintheanchorstrap.Forthebuckletobeinequilibrium,thesethreeforcesmustbalance.AlthoughboththemagnitudeTanddirection0oftheforceinstrapABareunknown,bothquantitiesareshownonthefreebodydiagramforcompleteness.EXAMPLEDuringcrashtestingofanautomobile,thelapandshoulderseatbeltseachbecometensionedto300lb,asshowninFigure4.15(a).TreatingthebuckleBasaparticle,(a)drawafreebodydiagram,(b)determinethetensionTintheanchorstrapAB,and(c)determinetheangleatwhichTacts.4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams26FINGURE4.15EquilibriumanalysisoftheseatbeltlatchinExample4.5.4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams27(b)Wesumthethreeforcesbyusingthevectorpolygonapproach,asshowninFigure4.15(c).Thepolygon'sstartandendpointsarethesamebecausethethreeforcesactingtogetherhavezeroresultant;thatis,thedistancebetweenthepolygon'sstartandendpointsiszero.Thetensionisdeterminedbyapplyingthelawofcosines(equationsforobliquetrianglesarereviewedinAppendixB)totheside-angle-sidetriangleinFigure4.15(c):T2=(300lb)2+(300lb)2-2(300lb)(300lb)cos120ofromwhichwecalculateT=519.6lb.(c)Theanchorstrap'sangleisfoundfromthelawofsines:
andθ=30o.SUMMARY28Inthischapter,weintroducedtheengineeringscienceconceptsofforces,resultants,moments,andequilibrium.Weexaminedthosequantitiesinthecontextofforcesactingonmachines
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海洋生物入侵种防控考核试卷
- 精密陶瓷制造设备考核试卷
- 针织服装的设计与产品生命周期管理考核试卷
- 连续搬运设备人机交互设计考核试卷
- 国培学习成果总结汇报
- 白血病疾病查房
- 口腔护理工艺流程图解
- 胸部CT常见疾病诊断要点
- 口腔黏膜炎护理
- Gilvusmycin-生命科学试剂-MCE
- 高等教育信息化建设方案
- GB/T 44757-2024钛及钛合金阳极氧化膜
- 人工神经网络理论及应用课件第6章-反馈神经网络
- 《BOM培训资料》课件
- DB13-T 5927-2024 地热资源开发监测技术规范
- 2024年广东省公务员录用考试《行测》真题及答案解析
- 生态养殖羊圈施工合同
- 【团体标准】TDZJN 77-2022 锂离子电池产品碳足迹评价导则
- 传感器的种类课件
- 2023日语专四真题专业四级真题
- 2024AI Agent行业研究报告
评论
0/150
提交评论