版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
旋转单元测试题一、选择题:1、大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A.
B.
C.
D.2、下列图形中,是中心对称图形又是轴对称图形的有()①平行四边形;②菱形;③矩形;④正方形;⑤等腰梯形;⑥线段;⑦角.A.2个
B.3个
C.4个
D.5个3、如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(,)4、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A
B.点B
C.点C
D.点D5、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°6、如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°
B.64°
C.77°
D.87°7、平面直角坐标系中,将点A(1,2)绕点P(﹣1,1)顺时针旋转90°到点A′处,则点的坐标为()A.(﹣2,3)
B.(0,﹣1)
C.(1,0)D.(﹣3,0)8、如图,在平面直角坐标系中将△ABC绕点C(0,﹣1)旋转180°得到△A1B1C1,设点A1的坐标为(m,n),则点A的坐标为()A.(﹣m,﹣n)
B.(﹣m,﹣n﹣2)
C.(﹣m,﹣n﹣1)
D.(﹣m,﹣n+1)9、如图,在△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(-1,-)
B.(-1,-)或(-2,0)C.(-,-1)或(0,-2)
D.(-,-1)10、把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5
C.4
D.11、如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为(
)
A.
B.
C.
D.
12、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.上述结论中始终正确的有(
)A.4个
B.3个
C.2个
D.1个二、填空题:13、下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.14、如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是.15、在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为.16、如图,△ABC中,∠BAC=40°,把△ABC绕点A逆时针旋转60°,得△ADE,则∠EAC的度数为______.17、如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(-1,0),若将线段BA绕点B顺时针旋转90°得到线段BA',则点A'的坐标为.
18、如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.三、作图题:19、每个小方格都是边长为1个单位长度,正方形ABCD在坐标系中的位置如图所示.(1)画出正方形ABCD关于原点中心对称的图形;(2)画出正方形ABCD绕点D点顺时针方向旋转90°后的图形;(3)求出正方形ABCD的点B绕点D点顺时针方向旋转90°后经过的路线.四、解答题:20、如图,已知∠B=∠D,∠1=∠2,AB=AD.求证:AC=AE.
21、在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)请在图中画出△AEF.(2)请在x轴上找一个点P,使PA+PE的值最小,并直接写出P点的坐标为.22、如图,将矩形绕点顺时针旋转,得到矩形,点的对应点恰好落在的延长线上,边交边于点.(1)求证:.(2)若,,求的长.23、一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.24、如图,△ABC中,AB=AC=2,∠BAC=45°,将△ABC绕点A按顺时针方向旋转角得到△AEF,且00<≤1800,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当=900时,求四边形AEDC的面积.参考答案1、D2、C3、C4、B5、C6、C7、B8、B9、B10、B11、C12、B13、2个.14、3.15、(2,1)16、答案为60°.17、(1,-4);
18、24+9.19、解:(1)如图,正方形A′B′C′D′为所作;(2)如图,正方形CFED为所作;(3)BD==,所以正方形ABCD的点B绕点D点顺时针方向旋转90°后经过的路线长==π.20、由∠1=∠2,同时加∠DAC,得∠BAC=∠DAE,又∠B=∠D,AB=AD所以,ΔBAC与ΔDAF全等所以,AC=AE21、解:(1)如图,△AEF为所作;(2)作点A关于x轴的对称点A′,连结EA′交x轴于P点,如图,因为PA=PA′,所以PA+PE=PA′+PE=EA′,所以此时PA+PB的值最小,因为OP=AE=,所以P点坐标为(,0).故答案为(,0).22、解:(1)连结AC、,如图.
∵四边形ABCD为矩形,∴∠ABC90°,即.由旋转,得,∴.
(2)∵四边形为矩形,∴.∵,∴.由旋转,得,∴.∵,∴≌.∴.设,则.在中,,由勾股定理,得.解得.∴.
23、解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为a,面积为a2,周长为2a.(3)猜想:重叠部分的面积为.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=×=∴阴影部分的面积是.24、(1)①证明:由旋转可知,∠EAF=∠BAC,AE=AB,AF=AC.∴∠EAF+∠BAF=∠BAC+∠BAF,即∠BAE=∠CAF,又∵AB=AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电开水器市场发展预测和趋势分析
- 计算机用自动电唱机市场需求与消费特点分析
- 运载工具用制动蹄项目评价分析报告
- 2024年度城市智能交通系统建设委托合同
- 2024年度教育机构与房东签订的办学场地租赁合同
- 2024年度物流仓储共享合作合同
- 2024年度版权许可合同:某音乐版权公司授权某音乐平台使用音乐作品
- 2024年度个人房屋买卖合同范本
- 2024年度C型钢争议解决合同
- 2024年度影视制作合同:电影制作合作协议与投资分配
- 喷涂设备订购合同范例
- 人教版(2024新版)八年级上册物理期末必刷多项选择题50题(含答案解析)
- 课件科比教学课件
- 幼儿园食材采购安全管理制度
- 2024年医学科研诚信与医学研究伦理考试题库
- 蚁群优化算法
- 医疗健康管理合作框架协议
- 2024固态电池行业产业现状产业链相关公司及市场预测分析报告
- 山西煤矸石综合开发利用项目可行性研究报告
- 教师资格考试《高中心理健康专业面试》真题卷
- 新教科版五年级上册综合实践活动全册教案
评论
0/150
提交评论