【课件】平面直角坐标系_第1页
【课件】平面直角坐标系_第2页
【课件】平面直角坐标系_第3页
【课件】平面直角坐标系_第4页
【课件】平面直角坐标系_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、平面直角坐标系1.平面直角坐标系思考:声响定位问题

某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。(假定当时声音传播的速度为340m/s,各相关点均在同一平面上)

思考:怎样建立坐标系才有利于我们解决这个问题以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、C分别是西、东、北观测点,设P(x,y)为巨响为生点,由B、C同时听到巨响声,得|PC|=|PB|,故P在BC的垂直平分线PO上,PO的方程为y=-x,因A点比B点晚4s听到爆炸声,yxBACPo则A(1020,0),B(-1020,0),C(0,1020)故|PA|-|PB|=340×4=1360由双曲线定义知P点在以A、B为焦点的双曲线上,答:巨响发生在接报中心的西偏北450距中心处.用y=-x代入上式,得,∵|PA|>|PB|,解决此类应用题的关键:1、建立平面直角坐标系2、设点(点与坐标的对应)3、列式(方程与坐标的对应)4、化简5、说明坐标法例1.已知△ABC的三边a,b,c满足

b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。(A)FBCEOyx以△ABC的顶点A为原点O,边AB所在的直线x轴,建立直角坐标系,由已知,点A、B、F的坐标分别为解:A(0,0),B(c,0),F(,0).因此,BE与CF互相垂直.因为所以探究:你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?建系时,根据几何特点选择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。2.平面直角坐标系中的伸缩变换思考:(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?xO2y=sinxy=sin2x在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,就得到正弦曲线y=sin2x.上述的变换实质上就是一个坐标的压缩变换,即:设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来,得到点P’(x’,y’).x’=xy’=y1通常把叫做平面直角坐标系中的一个压缩变换。1坐标对应关系为:(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。设点P(x,y)经变换得到点为P’(x’,y’)x’=xy’=3y2通常把叫做平面直角坐标系中的一个坐标伸长变换。2在正弦曲线上任取一点P(x,y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x?写出其坐标变换。

在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.设点P(x,y)经变换得到点为P’(x’,y’)x’=xy’=3y3通常把叫做平面直角坐标系中的一个坐标伸缩变换。3定义:设P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应P’(x’,y’).称为平面直角坐标系中的伸缩变换。4注(1)(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。例2.在直角坐标系中,求下列方程所对应的图形经过伸缩变换x’=2xy’=3y后的图形。(1)2x+3y=0;(2)x2+y2=1将⑤代入2x+3y=0,得到经过伸缩变换后的图形的方程为x’+y’=0解(1)由伸缩变换得到x’=2xy’=3y(2)将⑤代入得到经过伸缩变换后的图形的方程为,即伸缩变换将圆变成了椭圆练习:1.在同一直角坐标系下,求满足下列图形的伸缩变换:曲线4x2+9y2=36变为曲线x’2+y’2=12.在同一直角坐标系下,经过伸缩变换后,曲线C变为x’2-9y’2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论