2023届新疆生产建设兵团二中学数学九上期末教学质量检测试题含解析_第1页
2023届新疆生产建设兵团二中学数学九上期末教学质量检测试题含解析_第2页
2023届新疆生产建设兵团二中学数学九上期末教学质量检测试题含解析_第3页
2023届新疆生产建设兵团二中学数学九上期末教学质量检测试题含解析_第4页
2023届新疆生产建设兵团二中学数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰2个白色小正方形(每个白色小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A. B. C. D.2.下列一元二次方程中有两个相等实数根的是()A.2x2-6x+1=0 B.3x2-x-5=0 C.x2+x=0 D.x2-4x+4=03.二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.0<k<14.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.85.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小6.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形7.已知点A(m2﹣5,2m+3)在第三象限角平分线上,则m=()A.4 B.﹣2 C.4或﹣2 D.﹣18.抛物线y=2x2+3与两坐标轴的公共点个数为()A.0个 B.1个 C.2个 D.3个9.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米 B.8米 C.5米 D.5.5米10.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.711.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B.C. D.12.如图,是的直径,点、、在上.若,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.14.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.15.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.16.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为_____.17.四边形ABCD与四边形位似,点O为位似中心.若,则________.18.计算:=.三、解答题(共78分)19.(8分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.20.(8分)如图,己知抛物线的图象与轴的一个交点为另一个交点为,且与轴交于点(1)求直线与抛物线的解析式;(2)若点是抛物线在轴下方图象上的-一动点,过点作轴交直线于点,当的值最大时,求的周长.21.(8分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?22.(10分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第1次

第2次

第3次

第4次

第5次

第6次

10

9

8

8

10

9

10

10

8

10

7

9

(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.23.(10分)在Rt△ABC中,∠ACB=90°,AC=BC=3,点D是斜边AB上一动点(点D与点A、B不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.(1)求△ADE的周长的最小值;(2)若CD=4,求AE的长度.24.(10分)下面是一位同学做的一道作图题:已知线段、、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段______就是所求的线段.(1)试将结论补完整:线段______就是所求的线段.(2)这位同学作图的依据是______;(3)如果,,,试用向量表示向量.25.(12分)在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.26.某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据题目意思我们可以得出总共有15种可能,而能构成轴对称图形的可能有4种,然后根据概率公式可计算出新构成的黑色部分的图形是轴对称图形的概率.【详解】解:如图所示可以涂成黑色的组合有:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;一共有15种可能构成黑色部分的图形是轴对称图形的:1,4;3,6;2,3;4,5;∴构成黑色部分的图形是轴对称图形的概率:故选:C.【点睛】此题主要考查的是利用轴对称设计图案,正确得出所有组合是解题的关键.2、D【解析】试题分析:选项A,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,即可得该方程有两个不相等的实数根;选项B△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,即可得该方程有两个不相等的实数根;选项C,△=b2﹣4ac=12﹣4×1×0=1>0,即可得该方程有两个不相等的实数根;选项D,△=b2﹣4ac=(﹣4)2﹣4×1×4=0,即可得该方程有两个相等的实数根.故选D.考点:根的判别式.3、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0<k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k<1,所以k的取值范围是0<k<1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.4、B【解析】根据垂径定理,构造直角三角形,连接OC,在RT△OCE中应用勾股定理即可.【详解】试题解析:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故选B.5、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.【点睛】本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.6、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误.D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【点睛】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.7、B【分析】根据第三象限角平分线上的点的特征是横纵坐标相等进行解答.【详解】因为,解得:,,当时,,不符合题意,应舍去.故选:B.【点睛】第三象限点的坐标特征是负负,第三象限角平分线上的点的特征是横纵坐标相等,掌握其特征是解本题的关键.8、B【分析】根据一元二次方程2x2+3=1的根的判别式的符号来判定抛物线y=2x2+3与x轴的交点个数,当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点.【详解】解:当y=1时,2x2+3=1.

∵△=12-4×2×3=-24<1,

∴一元二次方程2x2+3=1没有实数根,即抛物线y=2x2+3与x轴没有交点;

当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点,

∴抛物线y=2x2+3与两坐标轴的交点个数为1个.

故选B.【点睛】本题考查了抛物线与x轴、y轴的交点.注意,本题求得是“抛物线y=2x2+3与两坐标轴的交点个数”,而非“抛物线y=2x2+3与x轴交点的个数”.9、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:由相似三角形的性质得:,即解得:(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.10、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.11、D【分析】根据旋转的定义进行分析即可解答【详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.【点睛】本题考查了图纸旋转的性质,熟练掌握是解题的关键.12、C【分析】连接AD,BD,由圆周角定理可得∠ABD=25°,∠ADB=90°,从而可求得∠BAD=65°,再由圆的内接四边形对角互补得到∠BCD=115°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=25°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故选C【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.二、填空题(每题4分,共24分)13、【分析】由题意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,进而求得EF的长;如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,过N做NG⊥BC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;【详解】解:设运动的时间为秒时;由题意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如图:过N做NG⊥BC,垂足为G∵将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案为.【点睛】本题考查了相似三角形的判定及性质的运用、三角函数值的运用、勾股定理的运用,灵活利用相似三角形的性质和勾股定理是解答本题的关键.14、60°或120°【解析】试题解析:如图,作OH⊥AB于H,连接OA、OB,∠C和∠C′为AB所对的圆周角,∵OH⊥AB,∴AH=BH=AB=,在Rt△OAH中,∵cos∠OAH=,∴∠OAH=30°,∴∠AOB=180°-60°=120°,∴∠C=∠AOB=60°,∴∠C′=180°-∠C=120°,即弦AB所对的圆周角为60°或120°.点睛:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.16、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-1.17、1∶3【解析】根据四边形ABCD与四边形位似,,可知位似比为1:3,即可得相似比为1:3,即可得答案.【详解】∵四边形与四边形位似,点为位似中心.,∴四边形与四边形的位似比是1∶3,∴四边形与四边形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案为1∶3.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.18、1.【解析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.三、解答题(共78分)19、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【详解】解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,∴.将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,∴,∴;(2)由函数图象可得:x<﹣1或0<x<1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.20、(1),;(2)【分析】(1)直接用待定系数法求出直线和抛物线解析式;

(2)先求出最大的MN,再求出M,N坐标即可求出周长;【详解】解:(1)设直线的解析式为,将,两点的坐标代入,得,,所以直线的解析式为;将,两点的坐标代入,得,,所以抛物线的解析式为;(2)如图1,设,,则,,当时,有最大值4;取得最大值时,,,即.,即,,可得,,的周长.【点睛】此题是二次函数综合题,主要考查了待定系数法,函数的极值,三角形的周长,三角形的面积,方程组的求解,解本题的关键是建立的函数关系式.21、4株【分析】根据已知假设每盆花苗增加株,则每盆花苗有株,得出平均单株盈利为元,由题意得求出即可。【详解】解:设每盆花苗增加株,则每盆花苗有株,平均单株盈利为:元,由题意得:.化简,整理,.解这个方程,得,,则,,每盆植入株数尽可能少,盆应植4株.答:每盆应植4株.【点睛】此题考查了一元二次方程的应用,根据每盆花苗株数平均单株盈利总盈利得出方程是解题关键.22、(1)9,9(2)23,3【详解】(1)x甲==(10+9+8+8+10+9)÷6x乙=(10+10+8+10+7+9)÷6=(2)S(3)∵x甲∴推荐甲参加省比赛更合适【点睛】方差的基本知识是判断乘积等一些频率图形分布规律的常考点23、(1)6+;(2)3﹣或3+【分析】(1)根据勾股定理得到AB=AC=6,根据全等三角形的性质得到AE=BD,当DE最小时,△ADE的周长最小,过点C作CF⊥AB于点F,于是得到结论;(2)当点D在CF的右侧,当点D在CF的左侧,根据勾股定理即可得到结论【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC=3∴AB=AC=6,∵∠ECD=∠ACB=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∴△ADE的周长=AE+AD+DE=AB+DE,∴当DE最小时,△ADE的周长最小,过点C作CF⊥AB于点F,当CD⊥AB时,CD最短,等于3,此时DE=3,∴△ADE的周长的最小值是6+3;(2)当点D在CF的右侧,∵CF=AB=3,CD=4,∴DF=,∴AE=BD=BF﹣DF=3﹣;当点D在CF的左侧,同理可得AE=BD=3+,综上所述:AE的长度为3﹣或3+.【点睛】本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)【分析】(1)根据作图依据平行线分线段成比例定理求解可得;

(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;

(3)先证△OAC∽△OBD得,即,从而知,又,与反向可得出结果.【详解】解:(1)根据作图知,线段CD就是所求的线段x,

故答案为:CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论