




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二次函数的图象如图所示,若点A和B在此函数图象上,则与的大小关系是()A. B. C. D.无法确定2.下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比是,则周长比为;④若一个矩形的四边形分别比另一个矩形的四边形长2,那么这两个矩形一定相似.A.1个 B.2个 C.3个 D.4个3.如图是某货站传送货物的机器的侧面示意图.,原传送带与地面的夹角为,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为.则新传送带的长度为()A. B. C. D.无法计算4.对于函数,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小5.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则6.已知线段,,如果线段是线段和的比例中项,那么线段的长度是().A.8; B.; C.; D.1.7.下列几何体中,主视图和左视图都是矩形的是()A. B. C. D.8.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.9.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.510.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°11.如图,已知一次函数y=kx-2的图象与x轴、y轴分别交于A,B两点,与反比例函数的图象交于点C,且AB=AC,则k的值为()A.1 B.2 C.3 D.412.若关于x的一元二次方程有两个实数根,则k的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.某扇形的弧长为πcm,面积为3πcm2,则该扇形的半径为_____cm14.已知,则=_____.15.如图,已知的面积为48,将沿平移到,使和重合,连结交于,则的面积为__________.16.一元二次方程x2﹣16=0的解是_____.17.如图,已知AB,CD是☉O的直径,弧AE=弧AC,∠AOE=32°,那么∠COE的度数为________度.18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.三、解答题(共78分)19.(8分)(1)已知:如图1,为等边三角形,点为边上的一动点(点不与、重合),以为边作等边,连接.求证:①,②;(2)如图2,在中,,,点为上的一动点(点不与、重合),以为边作等腰,(顶点、、按逆时针方向排列),连接,类比题(1),请你猜想:①的度数;②线段、、之间的关系,并说明理由;(3)如图3,在(2)的条件下,若点在的延长线上运动,以为边作等腰,(顶点、、按逆时针方向排列),连接.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结,若,,直接写出的长.20.(8分)如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了ts.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?21.(8分)如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△ABC=20,BC=10,求DE的长.22.(10分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它过点A、B、C(要求尺规作图保留作图痕迹);(2)在(1)所作的圆中,求圆心角∠BOC的度数和该圆的半径23.(10分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:.求作:菱形,使菱形的顶点落在边上.24.(10分)年月日商用套餐正式上线.某移动营业厅为了吸引用户,设计了,两个可以自由转动的转盘(如图),转盘被等分为个扇形,分别为红色和黄色;转盘被等分为个扇形,分别为黄色、红色、蓝色,指针固定不动.营业厅规定,每位新用户可分别转动两个转盘各一次,转盘停止后,若指针所指区域颜色相同,则该用户可免费领取通用流量(若指针停在分割线上,则视其指向分割线右侧的扇形).小王办理业务获得一次转转盘的机会,求他能免费领取通用流量的概率.AB25.(12分)已知:如图,B,C,D三点在上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.(1)请在图中找出一个与∠CAP相等的角,这个角是;(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.26.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).
参考答案一、选择题(每题4分,共48分)1、A【分析】由图象可知抛物线的对称轴为直线,所以设点A关于对称轴对称的点为点C,如图,此时点C坐标为(-4,y1),点B与点C都在对称轴左边,从而利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴为直线,∴设点A关于对称轴对称的点为点C,∴点C坐标为(-4,y1),此时点A、B、C的大体位置如图所示,∵当时,y随着x的增大而减小,,∴.故选:A.【点睛】本题主要考查了二次函数的图象与性质,属于基本题型,熟练掌握二次函数的性质是解题关键.2、A【分析】根据位似变换的概念、相似多边形的判定定理和性质定理判断.【详解】解:①位似图形都相似,本选项说法正确;②两个等腰三角形不一定相似,本选项说法错误;③两个相似多边形的面积比是2:3,则周长比为,本选项说法错误;④若一个矩形的四边分别比另一个矩形的四边长2,那么这两个矩形对应边的比不一定相等,两个矩形不一定一定相似,本选项说法错误;∴正确的只有①;故选:A.【点睛】本题考查的是位似变换、相似多边形的判定和性质,掌握位似变换的概念、相似多边形的判定定理和性质定理是解题的关键.3、B【分析】根据已知条件,在中,求出AD的长,再在中求出AC的值.【详解】,,=8即即故选B.【点睛】本题考查了解直角三角形的应用,熟练掌握特殊角的三角函数值是解题的关键.4、C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.5、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.6、A【解析】根据线段比例中项的概念,可得,可得,解方程可求.【详解】解:若是、的比例中项,即,∴,∴,故选:.【点睛】本题考查了比例中项的概念,注意:求两条线段的比例中项的时候,负数应舍去.7、C【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A.主视图为圆形,左视图为圆,故选项错误;B.主视图为三角形,左视图为三角形,故选项错误;C.主视图为矩形,左视图为矩形,故选项正确;D.主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.8、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.9、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.10、A【解析】试题分析:∵弧长,∴圆心角.故选A.11、B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=,∴BO=CD=2,OA=AD=,∴OD=∴点C(,2),∵点C在反比例函数的图象上,∴,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.12、D【解析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键二、填空题(每题4分,共24分)13、1【分析】根据扇形的面积公式S=,可得出R的值.【详解】解:∵扇形的弧长为πcm,面积为3πcm2,扇形的面积公式S=,可得R=故答案为1.【点睛】本题考查了扇形面积的求法,掌握扇形面积公式是解答本题的关键.14、【解析】根据题意,设x=5k,y=3k,代入即可求得的值.【详解】解:由题意,设x=5k,y=3k,∴==.故答案为.【点睛】本题考查了分式的求值,解题的关键是根据分式的性质对已知分式进行变形.15、24【解析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得∠B=∠A´CC´,BC=B´C´,再根据同位角相等,两直线平行可得CD∥
AB,然后求出CD=AB,点C"到A´B´的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.也可用相似三角形的面积比等于相似比的平方来求.【详解】解:根据题意得
∠B=∠A´CC´,BC=B´C´,
∴CD//AB,CD=AB(三角形的中位线),
点C´到A´C´的距离等于点C到AB的距离,∴△CDC´的面积=△ABC的面积,=×48
=24
故答案为:24【点睛】本题考查的是三角形面积的求法之一,等高的三角形的面积比等于底的比,也可用相似三角形的面积比等于相似比的平方来求得.16、x1=﹣1,x2=1【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x2=16,开方得:x=±1,解得:x1=﹣1,x2=1.故答案为:x1=﹣1,x2=1【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键.17、64【分析】根据等弧所对的圆心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【详解】解:∵弧AE=弧AC,(已知)
∴∠AOE=∠COA(等弧所对的圆心角相等);
又∠AOE=32°,
∴∠COA=32°,
∴∠COE=∠AOE+∠COA=64°.
故答案是:64°.【点睛】本题考查圆心角、弧、弦的关系.在同圆或等圆中,两个圆心角、两条弧、两条弦三组量之间,如果有一组量相等,那么,它们所对应的其它量也相等.18、9.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第1个图形中小圆的个数为21;则知第n个图形中小圆的个数为n(n+1)+1.依此列出方程即可求得答案.【详解】解:设第n个图形有91个小圆,依题意有n2+n+1=91即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有91个小圆.故答案为:9【点睛】本题考查(1)、一元二次方程的应用;(2)、规律型:图形的变化类.三、解答题(共78分)19、(1)①见解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明见解析;(3)①(1)中的结论还成立,②AE=.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出∠DCE=110°;
(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;
(3)①运用(1)中的方法得出BD1+CD1=DE1;②根据Rt△BCE中,BE=10,BC=6,求得进而得出CD=8-6=1,在Rt△DCE中,求得最后根据△ADE是等腰直角三角形,即可得出AE的长.【详解】(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明:如图1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的结论还成立.
理由:如图3,∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE,
在△ABD与△ACE中,∴△ABD≌△ACE(SAS),
∴∠ABC=∠ACE=45°,BD=CE,
∴∠ABC+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°=∠ECD,
∴Rt△DCE中,CE1+CD1=DE1,
∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,
∴CD=8-6=1,
∴Rt△DCE中,∵△ADE是等腰直角三角形,【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用,解决问题的关键是掌握全等三角形的对应边相等,对应角相等.解题时注意:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20、(1)D(1,4);(1);(3)存在,t的值为1;(4)当或或时,△DPQ是一个以DQ为腰的等腰三角形【分析】(1)由题意得出点D的纵坐标为4,求出y=1x中y=4时x的值即可得;(1)由PQ∥OD证△CPQ∽△COD,得,即,解之可得;(3)分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F,对于直线y=1x,令y=4求出x的值,确定出D坐标,进而求出BD,BC的长,利用勾股定理求出CD的长,利用两对角相等的三角形相似得到三角形CQE与三角形CDF相似,由相似得比例表示出QE,由底PC,高QE表示出三角形PQC面积,再表示出三角形ODP面积,依据S△DOP=S△PCQ列出关于t的方程,解之可得;(4)由三角形CQE与三角形CDF相似,利用相似得比例表示出CE,PE,进而利用勾股定理表示出PQ1,DP1,以及DQ,分两种情况考虑:①当DQ=DP;②当DQ=PQ,求出t的值即可.【详解】解:(1)∵OA=4∴把代入得∴D(1,4).(1)在矩形OABC中,OA=4,OC=5∴AB=OC=5,BC=OA=4∴BD=3,DC=5由题意知:DQ=PC=t∴OP=CQ=5t∵PQ∥OD∴∴∴.(3)分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F则DF=OA=4∴DF∥QE∴△CQE∽△CDF∴∴∴∵S△DOP=S△PCQ∴∴,当t=5时,点P与点O重合,不构成三角形,应舍去∴t的值为1.(4)∵△CQE∽△CDF∴∴∴①当时,,解之得:②当时,解之得:答:当或或时,△DPQ是一个以DQ为腰的等腰三角形.【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.21、(1)见解析;(2)【分析】(1)根据题目条件证明和,利用两组对应角相等的三角形相似,证明;(2)过点A作于点M,先通过的面积求出AM的长,根据得到,再算出DE的长.【详解】解:(1)∵,∴,∵D是BC边上的中点且∴,∴,∴;(2)如图,过点A作于点M,∵,∴,解得,∵,,∴,∵,∴,∵,,∴,∴,∴.【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.22、(1)见解析;(2)∠BOC=90°,该圆的半径为1【分析】(1)作出AC的垂直平分线,交AB于点O,然后以点O为圆心、以OA为半径作圆即可;(2)根据等腰直角三角形的性质和圆周角定理即可求出∠BOC,根据圆周角定理的推论可得AB是⊙O的直径,然后根据勾股定理求出AB即得结果.【详解】解:(1)如图所示,⊙O即为所求;(2)∵∠ACB=90°,AC=BC=,∴∠A=∠B=45°,,∴∠BOC=2∠A=90°,∵∠ACB=90°,∴AB是⊙O的直径,∴⊙O的半径=AB=1.【点睛】本题考查了尺规作三角形的外接圆、等腰直角三角形的性质、勾股定理、圆周角定理及其推论等知识,属于基础题目,熟练掌握上述知识是解题的关键.23、作图见解析.【分析】由在上,结合菱形的性质,可得在的垂直平分线上,利用菱形的四条边相等确定的位置即可得到答案.【详解】解:作的垂直平分线交于,以为圆心,为半径作弧,交垂直平分线于,连接,则四边形即为所求.【点睛】本题考查的是菱形的判定与性质,同时考查了设计与作图,掌握以上知识是解题的关键.24、他能免费领取100G100G通用流量的概率为.【分析】列举出所有情况,让两个指针所指区域的颜色相同的情况数除以总情况数即为所求的概率.【详解】共有种等可能情况发生,其中指针所指区域颜色相同的情况有种,为(黄,黄),(红,红),∴【点睛】本题考查的是用列表法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25、(1)∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明见解析.【分析】(1)根据等腰三角形∆ABC三线合一解答即可;(2)连接EB,由PA是△CAB的垂直平分线,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA.然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级生物上册 3.7.2《我国的植物资源》教学设计 (新版)北师大版
- 17《跳水》教学设计-2023-2024学年统编版语文五年级下册
- 5风儿轻轻吹 第1课时(教学设计)-部编版道德与法治一年级下册
- 文献计量培训课件
- 人教部编版六年级上册6 人大代表为人民第三课时教案设计
- 8 《上课了》(教学设计)2023-2024学年统编版道德与法治一年级上册
- 人教版化学九年级上册第三单元课题1《分子和原子》教学设计
- 智慧城市水务管网升级与漏损管控可行性研究
- 优化一流营商环境实施路径
- 推动产教融合培养新商科人才的有效策略与路径
- 2025年版中等职业教育专业教学标准 710205 大数据技术应用
- 2025年河南省郑州市九年级中考一模数学试题 (原卷版+解析版)
- 2025榆林定边县国有企业财务会计人员招聘(10人)笔试参考题库附带答案详解
- 任务三家庭清扫有工序(教学课件)二年级下册劳动技术(人美版)
- 电商订单处理流程优化计划
- 建筑工程检测行业市场现状分析及未来三到五年发展趋势报告
- 高炉水渣基础知识
- 肿瘤标志物的试题及答案
- 2025年中考地理二轮复习:中考地理常见易混易错知识点与练习题(含答案)
- 硫酸使用安全培训
- 政务服务窗口培训课件
评论
0/150
提交评论