2023届山西省朔州市朔城区数学九年级第一学期期末学业质量监测试题含解析_第1页
2023届山西省朔州市朔城区数学九年级第一学期期末学业质量监测试题含解析_第2页
2023届山西省朔州市朔城区数学九年级第一学期期末学业质量监测试题含解析_第3页
2023届山西省朔州市朔城区数学九年级第一学期期末学业质量监测试题含解析_第4页
2023届山西省朔州市朔城区数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C. D.2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°得到△DEC,连接AD,若∠BAC=26°,则∠ADE的度数为()A.13° B.19° C.26° D.29°3.下列关于三角形的内心说法正确的是()A.内心是三角形三条角平分线的交点B.内心是三角形三边中垂线的交点C.内心到三角形三个顶点的距离相等D.钝角三角形的内心在三角形外4.在反比例函数的图像上有三点、、,若,而,则下列各式正确的是()A. B.C. D.5.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.46.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为()粒.A. B. C. D.7.二次函数的图象与y轴的交点坐标是()A.(0,1) B.(1,0) C.(-1,0) D.(0,-1)8.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是()A. B. C. D.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个10.如图,BD是⊙O的直径,圆周角∠A=30,则∠CBD的度数是()A.30 B.45 C.60 D.8011.如图,是的弦,半径于点且则的长为().A. B. C. D.12.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,都是等腰直角三角形,点都在轴上,点与原点重合,点都在直线上,点在轴上,轴,轴,若点的横坐标为﹣1,则点的纵坐标是_____.14.如图,已知AB是⊙O的直径,弦CD与AB相交,若∠BCD=24°,则∠ABD的度数为___度.15.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.16.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(只需写一个).17.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.18.已知x1、x2是关于x的方程x2+4x5=0的两个根,则x1x2=_____.三、解答题(共78分)19.(8分)有甲乙两个不透明的布袋,甲布袋装有个形状和重量完全相同的小球,分别标有数字和;乙布袋装有个形状和重量完全相同的小球,分别标有数字,和.先从甲布袋中随机取出一个小球,将小球上标有的数字记作;再从乙布袋中随机取出一个小球,再将小球标有的数字记作.(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标,求点在一次函数图象上的概率是多少?20.(8分)在平面直角坐标系中,点为坐标原点,一次函数的图象与反比例函数的图象交于两点,若,点的横坐标为-2.(1)求反比例函数及一次函数的解析式;(2)若一次函数的图象交轴于点,过点作轴的垂线交反比例函数图象于点,连接,求的面积.21.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.22.(10分)解方程:(1)+2x-5=0;(2)=.23.(10分)已知关于x的方程x2-(m+3)x+m+1=1.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.24.(10分)(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.25.(12分)如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+cosB的值.26.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据等量关系:2016年贫困人口×(1-下降率=2018年贫困人口,把相关数值代入即可.【详解】设这两年全省贫困人口的年平均下降率为,根据题意得:,故选:B.【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.2、B【分析】根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA=45°,根据∠ADE=∠CDA﹣∠CDE,即可求解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故选:B.【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,3、A【分析】根据三角形内心定义即可得到答案.【详解】∵内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,∴A正确,B、C、D均错误,故选:A.【点睛】此题考查三角形的内心,熟记定义是解题的关键.4、A【分析】首先判断反比例函数的比例系数为负数,可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点(x1,y1)和(x1,y1)的纵坐标的大小即可.【详解】∵反比例函数的比例系数为-1<0,∴图象的两个分支在第二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点(x1,y1)、(x1,y1)在第四象限,点(x3,y3)在第二象限,∴y3最大,∵x1>x1,y随x的增大而增大,∴y1>y1,∴y3>y1>y1.故选A.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的1个分支在第二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.5、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.6、B【解析】设瓶子中有豆子x粒,根据取出100粒刚好有记号的8粒列出算式,再进行计算即可.【详解】设瓶子中有豆子粒豆子,根据题意得:,解得:,经检验:是原分式方程的解,答:估计瓶子中豆子的数量约为粒.故选:.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.7、D【详解】当x=0时,y=0-1=-1,∴图象与y轴的交点坐标是(0,-1).故选D.8、A【分析】设,根据正方形的性质可得,再根据旋转的性质可得的长,然后由勾股定理可得的长,从而根据正弦的定义即可得.【详解】设由正方形的性质得由旋转的性质得在中,则故选:A.【点睛】本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出的长是解题关键.9、B【详解】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10、C【解析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【详解】解:如图,连接CD,∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故选C.【点睛】本题利用了直径所对的圆周角是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11、D【解析】连接OA,∵OC⊥AB,AB=6则AD=3且OA2=OD2+AD2,∴OA2=16+9,∴OA=OC=5cm.∴DC=OC-OD=1cm故选D.12、C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,

由题意得,,

解得,x=75,

则x+40=115,故选C.二、填空题(每题4分,共24分)13、【解析】由题意,可得,设,则,解得,求出的坐标,再设,则,解得,故求出的坐标,同理可求出、的坐标,根据规律即可得到的纵坐标.【详解】解:由题意,可得,设,则,解得,∴,设,则,解得,∴,设,则,解得,∴,同法可得,…,的纵坐标为,故答案为.【点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出、、,再发现规律即可求解.14、66【解析】连接AD,根据圆周角定理可求∠ADB=90°,由同弧所对圆周角相等可得∠DCB=∠DAB,即可求∠ABD的度数.【详解】解:连接AD,∵AB是直径,∴∠ADB=90°,∵∠BCD=24°,∴∠BAD=∠BCD=24°,∴∠ABD=66°,故答案为:66【点睛】本题考查了圆周角定理,根据圆周角定理可求∠ADB=90°是本题的关键.15、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键16、【解析】试题分析:有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.所以在本题的条件的需要满足考点:相似三角形的判定点评:解答本题的的关键是熟练掌握有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.17、1【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.18、-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x的方程x2+1x5=0的两个根,∴x1x2=-=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1x2=-.三、解答题(共78分)19、(1)(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点(x,y)在一次函数y=-2x+1图象上的情况,然后直接利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则点可能出现的所有坐标:(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)∵在所有的6种等可能结果中,落在y=﹣2x+1图象上的有(1,﹣1)、(2,﹣3)两种结果,∴点(x,y)在一次函数y=﹣2x+1图象上的概率是【点睛】本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键.20、(1),;(2)3【分析】(1)点代入,并且求出点坐标,将代入(2)【详解】解:(1)①②∴(2)21、(1)详见解析;(2)65°;(3).【分析】(1)连接AD,利用圆周角定理推知AD⊥BD,然后由等腰三角形的性质证得结论;(2)根据已知条件得到∠EOD=50°,结合圆周角定理求得∠DAC=25°,所以根据三角形内角和定理求得∠ABD的度数,则∠C=∠ABD,得解;(3)设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,根据射影定理知:BD2=BF•AB,据此列出方程求得x的值,最后代入弧长公式求解.【详解】(1)证明:如图,连接AD.∵AB是圆O的直径,∴AD⊥BD.又∵AB=AC,∴BD=CD.(2)解:∵弧DE=50°,∴∠EOD=50°.∴∠DAE=∠DOE=25°.∵由(1)知,AD⊥BD,则∠ADB=90°,∴∠ABD=90°﹣25°=65°.∵AB=AC,∴∠C=∠ABD=65°.(3)∵BC=8,BD=CD,∴BD=1.设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,∵AD⊥BD,DF⊥AB,∴BD2=BF•AB,即12=x•2x.解得x=1.∴OB=OD=BD=1,∴△OBD是等边三角形,∴∠BOD=60°.∴弧BD的长是:=.【点睛】此题主要考查圆的综合,解题的关键是熟知圆周角定理、三角形内角和及射影定理的运用.22、(1);(2);过程见详解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用直接开平方法求解即可.【详解】解:(1)+2x-5=0解得:;(2)=解得.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.23、(1)见解析;(2)【分析】(1)根据判别式即可求出答案.(2)将x=4代入原方程可求出m的值,求出m的值后代入原方程即可求出x的值.【详解】解:(1)由题意可知:△=(m+3)2﹣4(m+1)=m2+2m+5=m2+2m+1+4=(m+1)2+4,∵(m+1)2+4>1,∴△>1,∴不论m为何值,方程都有两个不相等的实数根.(2)当x=4代入x2﹣(m+3)x+m+1=1得解得m=,将m=代入x2﹣(m+3)x+m+1=1得∴原方程化为:3x2﹣14x+8=1,解得x=4或x=腰长为时,,构不成三角形;腰长为4时,该等腰三角形的周长为4+4+=所以此三角形的周长为.【点睛】本题考查了一元二次方程,熟练的掌握一元二次方程的解法是解题的关键.24、(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论