版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列的极限知识点、方法技巧及例题一、知识要点1数列极限的定义:一般地,如果当项数无限增大时,无穷数列的项无限趋近于某个常数(即|an-a|无限地接近于0),那么就说数列以为极限记作.(注:a不一定是{an}中的项)2几个重要极限:(1)(2)(C是常数)(3)(4)3.数列极限的运算法则:如果那么4.无穷等比数列的各项和(1)公比的绝对值小于1的无穷等比数列前n项的和,当n无限增大时的极限,叫做这个无穷等比数列各项的和,记做(2)二、方法与技巧(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)(3)求数列极限最后往往转化为或型的极限.(4)求极限的常用方法:①分子、分母同时除以或.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,,0-0,等形式,必须先化简成可求极限的类型再用四则运算求极限题型讲解例1求下列式子的极限:①;②;③;④;⑤(-n);⑥(++…+)例2的()A充分必要条件B充分不必要条件C必要不充分条件D既不充分又不必要条件例3数列{an}和{bn}都是公差不为0的等差数列,且=3,求的值为求(a>0);已知,求实数a,b的值;已知等比数列{an}的首项为a1,公比为q,且有(-qn)=,求a1的取值范围例7已知数列{an}是由正数构成的数列,a1=3,且满足lgan=lgan-1+lgc,其中n是大于1的整数,c是正数.(1)求数列{an}的通项公式及前n和Sn;(2)求的值.例题解析答案例1分析:①的分子有界,分可以无限增大,因此极限为0;②的分子次数等于分母次数,极限为两首项(最高项)系数之比;③的分子次数小于于分母次数,极限为0解:①;②;③点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n2后再求极限;(5)因与n都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)==(2)(-n)===(3)原式===(1+)=1点评:对于(1)要避免下面两种错误:①原式===1,②∵(2n2+n+7),(5n2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①(-n)=-n=∞-∞=0;②原式=-n=∞-∞不存在对于(3)要避免出现原式=++…+=0+0+…+0=0这样的错误例2B例3数列{an}和{bn}都是公差不为0的等差数列,且=3,求的值为解:由=3d1=3d2,∴==点评:化归思想例4求(a>0);解:=点评:注意分类讨论例5已知,求实数a,b的值;解:=1,∴a=1,b=─1例6已知等比数列{an}的首项为a1,公比为q,且有(-qn)=,求a1的取值范围解:(-qn)=,∴qn一定存在∴0<|q|<1或q=1当q=1时,-1=,∴a1=3当0<|q|<1时,由(-qn)=得=,∴2a1-1=q∴0<|2a1-1|<1∴0<a1<1且a1≠综上,得0<a1<1且a1≠或a1=3例7已知数列{an}是由正数构成的数列,a1=3,且满足lgan=lgan-1+lgc,其中n是大于1的整数,c是正数.(1)求数列{an}的通项公式及前n和Sn;(2)求的值.解:(1)由已知得an=c·an-1,∴{an}是以a1=3,公比为c的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级小古文课件
- 采购机车报告范文
- 财务鉴定报告范文
- 部门经理述职报告范文
- 别墅单体规划报告范文
- 《高血压食疗方》课件
- 2024年度柑橘产业大数据应用与服务合同
- 年度股权转让合同标的及转让价格
- 沥青材料品牌推广与2024年度营销合同
- 地下车位租赁合同电子版
- 民族团结铸牢中华民族共同体意识教学课件
- 2024年新春年货节特色小吃美食节活动方案
- 心血管疾病个案的护理处理
- 病毒性心肌炎患儿的护理
- 《子宫颈癌的护理》课件
- 加强医学人文素质教育的课程设计与学习策略研究
- 高空作业安全培训记录
- GB 43473-2023照明产品用控制装置及其部件安全要求
- 设备部年度工作总结计划
- 使帐物相符并有效控制库存培训课件
- 《防火安全知识》课件
评论
0/150
提交评论