版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第高一数学教学计划15篇
高一数学教学计划1
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形。重点是正弦定理与余弦定理。难点是正弦定理与余弦定理的应用。第二章:数列。重点是等差数列与等比数列的前n项的和。难点是等差数列与等比数列前n项的和与应用。第三章:不等式。重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式。难点是二元一次不等式(组)与简单的线性规划问题及应用。
必修2第一章:空间几何体。重点是空间几何体的三视图和直观图及表面积与体积。难点是空间几何体的三视图。第二章:点、直线、平面之间的位置关系。重点与难点都是直线与平面平行及垂直的判定及其性质。第三章:直线与方程。重点是直线的倾斜角与斜率及直线方程。难点是如何选择恰当的直线方程求解题目。第四章:圆与方程。重点是圆的方程及直线与圆的位置关系。难点是直线与圆的位置关系。
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数。理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3、理解不等式(组)对于刻画不等关系的意义和价值。掌握求解一元二次不等式的基本方法,并能解决一些实际问题。能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法。再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一。上好每一节课,及时对学生的思想进行观察与指导。课后进行有效的辅导。进行有效的课堂反思。
高一数学教学计划2
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节教学内容师生互动设计意图
提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={_|_是有理数},
B={_|_是无理数},
C={_|_是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={_|_∈A,或_∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.
例2设集合A={_|–1
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={_|–1
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老师要求学生对性质进行合理解释.培养学生数学思维能力.
形成概念自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B={_|_∈A且_∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.
应用举例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新华中学开运动会,设
A={_|_是新华中学高一年级参加百米赛跑的同学},
B={_|_是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={_|_是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};
(2)直线l1,l2平行可表示为
L1∩L2=;
(3)直线l1,l2重合可表示为
L1∩L2=L1=L2.提升学生的动手实践能力.
归纳总结并集:A∪B={_|_∈A或_∈B}
交集:A∩B={_|_∈A且_∈B}
性质:①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结
老师点评、阐述归纳知识、构建知识网络
课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华
备选例题
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
当a=–3时,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={_|–1
(1)若A∩B=,求a的取值范围;
(2)若A∪B={_|_
【解析】(1)如下图所示:A={_|–1
∴数轴上点_=a在_=–1左侧.
∴a≤–1.
(2)如右图所示:A={_|–1
∴数轴上点_=a在_=–1和_=1之间.
∴–1
例3已知集合A={_|_2–a_+a2–19=0},B={_|_2–5_+6=0},C={_|_2+2_–8=0},求a取何实数时,A∩B与A∩C=同时成立?
【解析】B={_|_2–5_+6=0}={2,3},C={_|_2+2_–8=0}={2,–4}.
由A∩B和A∩C=同时成立可知,3是方程_2–a_+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2.
当a=5时,A={_|_2–5_+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.
当a=–2时,A={_|_2+2_–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.
例4设集合A={_2,2_–1,–4},B={_–5,1–_,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得_2=9或2_–1=9,解得_=±3或_=5.
当_=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.
当_=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.
当_=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.
综上所述,_=–3且A∪B={–8,–4,4,–7,9}.
高一数学教学计划3
一、教学目标
1.知识与技能目标
(1).掌握集合的两种表示方法;能够按照指定的方法表示一些集合.
(2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.
2.过程与方法目标
①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。
②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力
情感态度与价值观目标感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。
2、教材分析本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。
集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。
在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、
第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。
3、学情分析
学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学
生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。
二、方法与手段
本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。
3、教学重难点
重点:列举法、描述法。
难点:运用集合的三种常用表示方法正确表示一些简单的集合
4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。
5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。
6、教学思路:
7、教学过程
7.1创设情境,引入课题
【活动】多媒体展示:1、草原一群大象在缓步走来。
2、蓝蓝的天空中,一群鸟在飞翔
3、一群学生在一起玩。
引导学生举出一些类似的例子问题
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。
7.2步步探索,形成概念
【活动1】观察下列对象:
①1~20以内的所有质数;
②我国从1991—20__年的13年内所发射的所有人造卫星
③金星汽车厂20__年生产的所有汽车;
④20__年1月1日之前与我国建立外交关系的所有国家;
⑤所有的正方形;
⑥到直线l的距离等于定长d的所有的点;
⑦方程_2+3_—2=0的所有实数根;
⑧新华中学20__年9月入学的所有的高一学生。
师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。
【设计意图】使学生自己明确集合的含义,培养学生的概括能力。
【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比
如:
1)A={1,3},3、5哪个是A的元素?
2)B={身材较高的人},能否表示成集合?
3)C={1,1,3}表示是否准确?
4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?
5)F={a,b,c}与G={c,b,a}这两个集合是否一样?
【分析】1)1,3是A的元素,5不是
2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,
所以B不能表示集合
3)C中有二个1,因此表达不准确
4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不只有这几个,因此不相等。
5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合
通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:
1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.
2)互异性:同一集合中不应重复出现同一元素.
3)无序性:集合中的元素没有顺序
4)集合相等:构成两个集合的元素完全一样
【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。
7.3集合与元素的关系
【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是
高一(5)班的同学,a、b与A分别有什么关系?
引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。
②如果b不是集合A的元素,就说b不属于集合A,记作b?A。
再让学生举一些例子说明这种关系。
【设计意图】使学生发挥想象,明确元素与集合的关系。
【活动】熟记数学中一些常用的数集及其记法
引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。
【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。
7.4集合的表示方法
【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?
7.4.1集合的列举法表示
【活动】尝试用列举法第4页例1中的集合:
1)小于10的所有自然数组成的集合;
2)方程_2?_的所有实数根组成的集合;
3)由1到20以内的所有素数组成的集合;
并思考列举法的特点。
引导学生阅读教科书,自主学习列举法,得出答案:
1)A={0,1,2,3,4,5,6,7,8,9}
2)A={0,1}
3)A={2,3,5,7,11,13,17,19}
通过上述讲解请同学说说列举法的特点:
1)用花括号{}把元素括起来
2)集合的元素可以具体一一列出
【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。
7.4.2集合的描述法表示
【活动1】提出教科书中的思考题:
1)你能用自然语言描述集合{2,4,6,8}吗?
2)你能用列举法表示不等式_—7
学生讨论,师生总结:
1)从2开始到8的所有偶数组成的集合
2)这个集合中的元素不能一一列出,因此不可以用列举法表示
引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。
引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。
例如2)可以用描述法表示为:A={_?R|_
【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。
【活动2】引导学生完成第5页例2
1)方程_2?2?0的所有实数根组成的集合
2)由大于10小于20的所有整数组成的集合
讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:
1)描述法:A={_?R|_2?2?0}
列举法:
2)描述法:A={_?Z|10
列举法:A={11,12,13,14,15,16,17,18,19}
【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。
7.5课堂小结,学习反思
【问题】1)集合与元素的含义?
2)集合的特点?
3)集合的不同表示方法
引导学生整理概括这一节课所学的知识
【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。
8、作业布置,巩固新知
课后作业:习题1.1A组第4题
课后思考作业:①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。
②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。
9、板书设计
1.1.1集合的含义与表示
1、元素的含义:把研究对象统称为元素
2、集合的含义:一些元素组成的总体。
3、集合元素的三个特性:确定性,互异性,无序性,集合相等
4、元素与集合的关系:a?A,a?A
5、常用数集与记法
6、列举法
7、描述法
8、课堂小结
高一数学教学计划4
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
五、教学进度
周次课、章、节教学内容备注
11.1,1.2解三角形
21.2解三角形
32.1,2.2数列的概念与简单表示法,等差数列
42.3等差数列的前n项和
52.4,2.5等比数列及前n项和
62.5考试
73.1,3.2不等关系与不等式,一元二次不等式及其解法
83.3,3.4二元一次不等式(组)与简单线性规划问题,基本不等式
9考试,复习
10期中考试
111.1,1.2空间几何体的结构,三视图,直观图
121.3空间几何体的表面积与体积
132.1,2.2空间点、直线、平面的位置关系,直线、平面平行的判定及其性质
142.3直线、平面的判定及其性质
153.1,3.2直线的倾斜角与斜率,直线方程
163.3直线的交点坐标与距离公式
174.1,4.2圆的方程,直线、圆的位置关系
184.3空间直角坐标系
19复习
20考试
高一数学教学计划5
一、基本情况
高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.
二、指导思想
全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。
三、工作任务和措施
任务:基础模块第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函数(11月份
第四章指数函数与对数函数(12月份-1月份
措施:
1.夯实三基
知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:
A.教学面向全体学生。
B.重视概念的归纳、规律的总结、技能的训练。
C.重视知识的产生、发展过程。
D.加强知识过关检测,做好查漏补缺工作。
2.优化课堂教学结构
A.精心设计课堂教学:
B.课堂练习典型化;
C.教学语言精练化
D.板书规范化。
3.加强学习方法指导:
A.指导学生看书,培养学生主动学习的习惯。
B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。
4.加强学风建设与学习习惯的培养。
适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。
四、各章节授课具体时间安排:
(基础模块第一章集合(约12课时
(1理解集合、元素及其关系,掌握集合的表示法。
(2掌握集合之间的关系(子集、真子集、相等。
(3理解集合的运算(交、并、补。
(4了解充要条件。
(基础模块第二章不等式(约12课时
(1理解不等式的基本性质。
(2掌握区间的概念。高一上数学教学计划高一上数学教学计划。
(3掌握一元二次不等式的解法。
基础模块)第三章函数(约20课时
(1理解函数的概念和函数的三种表示法。
(2理解函数的单调性与奇偶性。
(3能运用函数的知识解决有关实际问题。
(基础模块第四章指数函数与对数函数(约20课时
(1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。
(2了解幂函数的概念及其简单性质。
(3理解指数函数的概念、图像及性质。
(4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。
(5理解对数函数的概念、图像及性质。
(6能运用指数函数与对数函数的知识解决有关实际问题。
高一数学教学计划6
本学期担任高一_1、_2两班的数学教学工作,两班学生共有_人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别_1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。
2、培养学生的运算能力。
(1)通过三角函数求值与化简问题的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
二、教学要求
(一)三角函数
1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算.
2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式.
3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力
4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆).
5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ω_+φ)的简图.理解A,ω、φ的物理意义.
6.会由已知三角函数值求角.并会用符号arcsin_、arccos_、arctan_表示角。
(二)平面向量
1理解向量的概念,掌握向量的几何表示,了解共线问量的概念
2掌握向量的加法与减法
3掌握实数与向量的积,理解两个向量共线的充要条件
4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件
6掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式
7掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力
8通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力
9通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流.
三、教学重点
1、掌握同角三角函数的基本关系式
2.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五点法”画正弦函数、余弦函数和函数y=Asin(ω_+φ)的简图。
4.掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形
四、教学难点
1.函数y=Asin(ω_+φ)的简图
2.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象
3.掌握正弦定理、余弦定理,并能运用它们解斜三角形
五、工作措施.
1、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。
(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的`学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。
课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
(1)加强数学数学竞赛的指导,提高学习兴趣。
(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。
(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。
3、搞好单元考试、阶段性考试的分析。
学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。
六、进度安排.
第四章三角函数
§4.1角的概念的推广………………2课时
§4.2弧度制…………………………2课时
§4.3任意角的三角函数……………2课时
§4.4同角三角函数的关系…………2课时
§4.5诱导公式………………………2课时
§4.6两角和与差三角函数…………7课时
§4.7二倍角公式……………………3课时
§4.8三角函数的图象与性质………………………4课时
§4.9函数y=sin(ω_+φ)的图象…………………3课时
§4.10正切函数的图象与性质………………………3课时
§4.11给值求角………………………4课时
第五章平面向量…
§5.1向量……………1课时
§5.2向量的加法及减法……………2课时
§5.3实数与向量的积………………2课时
§5.4平面向量的坐标运算…………2课时
§5.5线段的定比分点………………2课时
§5.6平面向量的坐标运算…………2课时
§5.7平面向量的数量积及运算律…………………2课时
§5.8平面向量数量积的坐标表示…………………2课时
§5.9正弦定理、余弦定理…………2课时
§5.10解斜三角形应用举例…………2课时
§5.11实习作业………………………2课时
第六章不等式…
§6.1不等式的性质…………………3课时
§6.2均值定理………………………2课时
§6.3不等式的证明…………………6课时
§6.4不等式的解法…………………3课时
期末复习20课时
高一数学教学计划7、
Ⅰ.教学内容解析
本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.
这是指数函数在本章的位置.
指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.
指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.
Ⅱ.教学目标设置
1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.
2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.
3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.
4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.
Ⅲ.学生学情分析
授课班级学生为南京师大附中实验班学生.
1.学生已有认知基础
学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.
2.达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.
3.难点及突破策略
难点:1.对研究函数的一般方法的认识.
2.自主选择底数不当导致归纳所得结论片面.
突破策略:
1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.
2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.
3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.
Ⅳ.教学策略设计
根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.
学生的自主学习,具体落实在三个环节:
(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.
(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.
(3)性质应用阶段,学生自主举例说明指数函数性质的应用.
研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.
Ⅴ.教学过程设计
1.创设情境建构概念
师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?
师:大家知道细胞分裂的规律吗?(出示情境问题)
[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂_次,相应的细胞个数为y,如何描述这两个变量的关系?
[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过_年,该物质剩余的质量为y,如何描述这两个变量的关系?
[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2_和y=0.84_.
师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?
〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?
[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=a_这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注_∈R时,y=a_是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.
[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=a_.
[教学预设]学生能举出具体的例子——y=3_,y=0.5_….如出现y=(-2)_最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=a_.
方案1:
生:(举例)函数y=3_,y=4_,…(函数y=a_(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=0.5_,y=_,y=(-2)_,y=1_…
师:板书学生举例(停顿),好像有不同意见.
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,_就不能取任意实数了.
师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.
(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2_和y=0.84_中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)
师:这些函数有什么共同特点?
生:都有指数运算.底数是常数,自变量在指数位置.
(若有学生举出类似y=ma_的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=a_,从而初步建立函数模型y=a_,初步体会基本初等函数的作用.)
师:具备上述特征的函数能否写成一般形式?
生:可以写成y=a_(a>0).
师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)
方案2:
生:(举例)函数y=3_,y=4_,…(函数y=a_(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=0.5_,y=_,…
师:这些函数的自变量是什么?它们有什么共同特点?
生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=a_.
师:y=a_中,自变量是_,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,_就不能取任意实数了.
师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)
[阶段小结]一般地,函数y=a_(a>0且a≠1)称为指数函数.它的定义域是R.
[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22_是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.
2.实验探索汇报交流
(1)构建研究方法
师:我们定义了一个新的函数,接下来,我们研究什么呢?
生:研究函数的性质.
〖问题2你打算如何研究指数函数的性质?
[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.
[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.
[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.
师:(稍等片刻)我们一般要研究哪些性质呢?
生:变量取值范围(定义域、值域)、单调性、奇偶性.
师:(板书学生回答)怎样研究这些性质呢?
生:先画出函数图象,观察图象,分析函数性质.
生:先研究几个具体的指数函数,再研究一般情况.
师:板书“画图观察”,“取特殊值”
(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=k_(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)
(若有学生通过对y=2_解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))
[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.
(2)自主探究汇报交流
师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.
〖问题3选取数据,画出图象,观察特点,归纳性质.
[设计意图]若直接规定底数取值,对于为什么要以y=2_,y=3_,y=0.5_为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.
由于描点作图时列举点的个数的限制,学生对_→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象,验证猜想.
数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.
[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.
[教学预设]学生通过观察图象,发现指数函数y=a_(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.
生:自主选择数据,在坐标纸上列表作图,列出函数性质.
师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)
生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.
师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?
师:(用彩笔描粗图象,故意出错)错在哪里?为什么?
生:指数函数是单调递增的,过定点(0,1).
师:(引导学生规范表述,并板书)指数函数在(-∞,+∞)上单调递增,图象过定点(0,1).
师:指数函数还有其它性质吗?
师:也就是说值域为(0,+∞).
生:指数函数是非奇非偶函数.
师:有不同意见吗?
生:当0
(其它预设:
(1)当a>1时,若_>0,则y>1;若_
当00,则y1.
(2)学生画出y=2_和y=3_图象,得出函数递增速度的差异.
(3)画出y=2_和y=0.5_图象,得到底数互为倒数的指数函数图象关于y轴对称.)
师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0
[阶段小结]指数函数y=a_(a>0且a≠1)具有以下性质:
①定义域为R.
②值域为(0,+∞).
③图象过定点(0,1).
④非奇非偶函数.
⑤当a>1时,函数y=a_在(-∞,+∞)上单调递增;
当0
⑥函数y=a_与y=()_(a>0且a≠1)图象关于y轴对称.
⑦指数函数y=a_与y=b_(a>b)的图象有如下关系:
_∈(-∞,0)时,y=a_图象在y=b_图象下方;
_=0时,两图象相交;
_∈(0,+∞)时,y=a_图象在y=b_图象上方.
[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.
3.新知运用巩固深化
(方案一)(分析函数性质的用途)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0,1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?
生:可以求最值,可以比较两个函数值的大小.
师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)
生:(举例并判断大小.)
师:你考察了哪个指数函数?怎么想到的?(规范表述)
师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)
(方案二)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:(口述并板书)你能比较32与33的大小吗?
生:直接计算比较.
师:那比较30.2与30.3的大小呢?能不能不计算呢?
生:利用函数y=3_的单调性.
师:能具体说明吗?(引导学生规范表达)我们再试一试.
(出示例1)
【例1】比较下列各组数中两个值的大小:
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[设计意图]引导学生运用指数函数性质.对于32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.
[师生活动]学生板演,教师组织学生点评.
[教学预设]①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.
师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?
师:(对③的引导)你考虑利用哪个函数?是y=1.5_还是y=0.8_?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)
生:它们都过点(0,1).
师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?
生:比较1.50.3,0.81.2和1的大小.
师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.
【例2】
①已知3_≥30.5,求实数_的取值范围;
②已知0.2_
[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.
4.概括知识总结方法
〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?
[设计意图]回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.
[师生活动]学生发言总结,交流所得.
[教学预设]
通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:
①指数函数的定义与性质;
②研究函数的一般方法和步骤.
师:本节课我们学习了什么知识?
生:指数函数的定义和性质.
师:回顾我们的研究过程,我们是怎样研究指数函数的?
生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.
生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.
师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.
[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.
5.分层作业,因材施教
(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;
(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?
[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.
Ⅵ.教后反思回顾
一、对于指数函数概念的认识
指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22_是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.
二、对于培养学生思维习惯的考虑
在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.
三、关于设计定位的反思
本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、
高一数学教学计划8
一、具体目标:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。
5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。
6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学……
二、本学期要到达的教学目标
1、双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其资料反映出来的数学思想和方法。在基本技能方面能按照必须的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2、本事培养:
能运用数学概念、思想方法,辨明数学关系,构成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,构成数学的意思;从而经过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3、思想教育:
培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
三、进度授课计划及进度表
(略)
高一数学教学计划9
教材教法分析
本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
教学目标
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程
③感受类比思想在探究新知识过程中的作用
2、过程与方法
①结合具体问题引入,诱导学生探究
②类比学习,循序渐进
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
教学难点
“通过建立恰当的空间直角坐标系,确定空间点的坐标”。
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
高一数学教学计划10
指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计中级学习计划
- 4六年级某年班主任下学期工作计划
- 2024届高三历史备课组计划
- 中学第二学期语文教研组工作计划
- 文艺与宣传委员工作计划例文
- 学校办公室主任工作总结及计划
- 4年度大学社工部的工作计划
- 2021年会计年度工作计划例文
- 装潢装饰设计划毕业生的实习总结
- 荐新员工培训计划范文
- 丙烯酸丁酯制备生产工艺及产污节点
- 验线记录表格
- 二年级数学上册教学课件:第9单元 除法 北师大版
- 洒水车检测报告表
- 部编三年级上册语文期末整理复习强化练习题
- 五年级上册数学课件-4.1 小数加法和减法丨苏教版 (共23张PPT)
- 家族祭祖祭文
- 《青春期的异性交往》主题班会课件
- 思想道德与法治课件:第四章 第二节 社会主义核心价值观的显著特征
- 五四制青岛版2022-2023三年级科学上册第七单元第25课《量筒》课件(定稿)
- 车辆租赁审批单(模板)
评论
0/150
提交评论