下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安市第十三中学2021年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则的最小值为()A.4 B.12 C.16 D.6参考答案:D【考点】7G:基本不等式在最值问题中的应用;J9:直线与圆的位置关系.【分析】利用已知条件求出m,n的关系式,然后利用基本不等式求解最值即可.【解答】解:圆(x+3)2+(y+1)2=1的半径为1,圆心(﹣3,﹣1)直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,直线经过圆的圆心.可得:3m+n=2.则=()(3m+n)=(3+3++)≥3+=6.当且仅当m=,n=1时取等号.故选:D.2.函数的一个零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:B【分析】先求出根据零点存在性定理得解.【详解】由题得,,所以所以函数的一个零点所在的区间是.故选:B【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.3.下列命题中的真命题是()A.是有理数 B.是实数 C.e是有理数 D.{x|x是小数}?R参考答案:B【考点】命题的真假判断与应用.【分析】首先判断出是无理数,是实数,e是无理数,{x|x是小数}为实数,然后结合选择项逐一判断命题的真假.【解答】解:A.因为是无理数,所以A为假命题.B.因为属于无理数指数幂,结果是个实数,所以B为真命题.C.因为e是无理数,所以C为假命题.D.因为{x|x是小数}=R,所以D为假命题.故选B.4.双曲线的渐近线方程为A.
B.
C.
D.参考答案:B5.已知,则的大小关系为A. B. C. D.参考答案:A略6.下列关系式中,正确的是(
)A.
B.C.
D.参考答案:D7.用数学归纳法证明等式1+2+3+…+(n+3)=(n∈N*),验证当n=1时,左端应取的项是
(
)A.1
B.1+2
C.1+2+3
D.1+2+3+4参考答案:D略8.知两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,则满足条件a的值为()A. B. C.﹣2 D.2参考答案:C【考点】直线的一般式方程与直线的平行关系.
【专题】直线与圆.【分析】根据两直线平行,直线方程中一次项系数之比相等,但不等于常数项之比,求得a的值.【解答】解:根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得,求得a=﹣2,故选C.【点评】本题主要考查两直线平行的性质,两直线平行,直线方程中一次项系数之比相等,但不等于常数项之比,属于基础题.9.某高中计划从全校学生中按年级采用分层抽样方法抽取20名学生进行心理测试,其中高三有学生900人,已知高一与高二共抽取了14人,则全校学生的人数为( )A.2400 B.2700 C.3000 D.3600参考答案:C试题分析:(人),故选C.
10.的展开式中,的系数是()A. B. C.297 D.207参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.参考答案:略12.若在R上可导,,则____________.参考答案:-1813.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)参考答案:48【考点】排列、组合及简单计数问题.【分析】对数字4分类讨论,结合数字1,3,5中有且仅有两个数字相邻,利用分类计数原理,即可得出结论.【解答】解:数字4出现在第2位时,数字1,3,5中相邻的数字出现在第3,4位或者4,5位,共有C32A22A22=12个,数字2出现在第4位时,同理也有12个;数字4出现在第3位时,数字1,3,5中相邻的数字出现在第1,2位或第4,5位,共有C21C32A22A22=24个,故满足条件的不同五位数的个数是48.故答案为:48.【点评】本题考查分类计数原理,考查排列、组合知识,考查学生的计算能力,属于中档题.14.已知,:(),若p是q的充分不必要条件,则a的取值范围为__________.参考答案:
15.计算_______.参考答案:-20略16.△ABC的三个内角为A、B、C,且2C–B=180°,又△ABC的周长与最长边的比值为m,那么m的最大值为
。参考答案:17.已知等比数列{an}的公比为正数,且a3a9=2a52,a2=2,则a1=.参考答案:考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由a3a9=2a52,结合等比数列的性质可求q,然后由可求解答:解:∵a3a9=2a52,由等比数列的性质可知,∴?a5∵an>0∴q=∵a2=2∴=故答案为:点评:本题主要考查了等比数列的通项公式的简单应用,属于基础试题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数.(1)当时,求函数的零点个数;(2)若,使得,求实数m的取值范围.参考答案:(1)见解析;(2)(2,+∞)【分析】(1)利用的符号讨论函数的单调性,结合零点存在定理可得零点的个数.(2)不等式有解等价于对任意恒成立即,构建新函数,求出后分和分类讨论可得实数的取值范围.【详解】解:(1),即,则,令解得.当在上单调递减;当在上单调递增,所以当时,.因为,所以.又,,所以,,所以分别在区间上各存在一个零点,函数存在两个零点.(2)假设对任意恒成立,即对任意恒成立.令,则.①当,即时,且不恒为0,所以函数在区间上单调递增.又,所以对任意恒成立.故不符合题意;②当时,令,得;令,得.所以函数在区间上单调递减,在区间上单调递增,所以,即当时,存在,使,即.故符合题意.综上可知,实数的取值范围是.【点睛】导数背景下的函数零点个数问题,应该根据单调性和零点存在定理来说明.含参数的不等式的有解问题,可转化为恒成立问题来处理,后者以导数为工具讨论函数的单调性从而得到函数的最值,最后由最值的正负得到不等式成立.19.已知正数、满足.(1)求的范围;(2)求的范围.参考答案:解:(1)、为正数即从而(2)、为正数即略20.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=.(Ⅰ)求A;(Ⅱ)若a=2,b+c=4,求△ABC的面积.参考答案:【考点】解三角形;三角函数的恒等变换及化简求值.【专题】综合题.【分析】(Ⅰ)根据两角和的余弦函数公式化简已知的等式,得到cos(B+C)的值,由B+C的范围,利用特殊角的三角函数值即可求出B+C的度数,然后由三角形的内角和定理求出A的度数;(Ⅱ)根据余弦定理表示出a的平方,配方变形后,把a,b+c及cosA的值代入即可求出bc的值,然后由bc及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)∵,∴又∵0<B+C<π,∴,∵A+B+C=π,∴.(Ⅱ)由余弦定理a2=b2+c2﹣2bc?cosA得即:,∴bc=4,∴.【点评】此题考查了三角函数的恒等变换及化简求值,余弦定理及三角形的面积公式,熟练掌握公式及定理是解本题的关键.21.如图,在直三棱柱ABC-A1B1C1中,,,且EF分别是BC,B1C1中点.(1)求证:A1B∥平面AEC1;(2)求直线AF与平面AEC1所成角的正弦值.参考答案:解:(1)证明:连接交于点,连接∵为正方形,∴为中点又为中点,所以为的中位线∴又平面,平面∴平面(2)作于,连接∵,为的中点∴又∵平面平面,且平面平面,平面∴平面,而平面∴平面平面∴平面∴即为直线与平面所成角设,则在中,,∴
22.已知直线l经过两直线l1:2x﹣y+4=0与l2:x﹣y+5=0的交点,且与直线x﹣2y﹣6=0垂直.(1)求直线l的方程;(2)若点P(a,1)到直线l的距离为,求实数a的值.参考答案:【考点】直线与圆的位置关系.【分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可使用合同(图书出版)
- 2024中国建材集团总部招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国化学工程重型机械化限公司招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度企业设备进口与代理销售合同
- 2024年度瓷砖供应商合同5篇
- 《伟大的悲剧》课件
- 柏城站12月业务考试
- 电脑印刷第二单元(多选)
- 《钢结构规范新》课件
- 2024年度虚拟现实内容制作与体验合作合同
- 金属制品的回收与再利用
- 专题05-因式分解(历年真题)-2019-2020学年上海七年级数学上册期末专题复习(学生版)
- 窝沟封闭与龋病预防宣传
- 安全生产管理制度-普货运输
- 广西壮族自治区房屋建筑和市政工程监理招标文件范本(2020年版)
- 河北省石家庄市第四十中学2024-2025学年七年级上学期期中语文试题
- 2024-2030年中国地热能市场经济效益及发展前景展望研究报告
- 病句的辨析与修改(解析版)-2025年中考语文复习专练
- 艾滋病反歧视培训
- 公务用车车辆安全培训课件
- (5篇)2024年秋国开《形势与政策》大作业:中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么?【附答案】
评论
0/150
提交评论