2022年黑龙江省齐齐哈尔市昂昂溪区数学九上期末考试模拟试题含解析_第1页
2022年黑龙江省齐齐哈尔市昂昂溪区数学九上期末考试模拟试题含解析_第2页
2022年黑龙江省齐齐哈尔市昂昂溪区数学九上期末考试模拟试题含解析_第3页
2022年黑龙江省齐齐哈尔市昂昂溪区数学九上期末考试模拟试题含解析_第4页
2022年黑龙江省齐齐哈尔市昂昂溪区数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9502.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有()A.①③④ B.①②④ C.③④⑤ D.①③⑤3.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.134.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为()A.2 B.-2 C.4 D.-45.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.6.下列方程中,是一元二次方程的是().A. B. C. D.7.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变8.如图,在中,,则AC的长为()A.5 B.8 C.12 D.139.已知,点是线段上的黄金分割点,且,则的长为()A. B. C. D.10.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:211.对于一元二次方程来说,当时,方程有两个相等的实数根:若将的值在的基础上减小,则此时方程根的情况是()A.没有实数根 B.两个相等的实数根C.两个不相等的实数根 D.一个实数根12.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能二、填空题(每题4分,共24分)13.已知,相似比为,且的面积为,则的面积为__________.14.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为___________________15.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.16.当a=____时,关于x的方程式为一元二次方程17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)18.方程的解是.三、解答题(共78分)19.(8分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.20.(8分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠.各商场的优惠条件如下:甲商场优惠条件:第一台按原价收费,其余的每台优惠;乙商场优惠条件:每台优惠.设公司购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?21.(8分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.22.(10分)如图,已知中,,为上一点,以为直径作与相切于点,连接并延长交的延长线于点.(1)求证:;(2)若,求的长.23.(10分)为了估计鱼塘中的鱼数,养鱼老汉首先从鱼塘中打捞条鱼,并在每一条鱼身上做好记号,然后把这些鱼放归鱼塘,过一段时间,让鱼儿充分游动,再从鱼塘中打捞条鱼,如果在这条鱼中有条是有记号的,那么养鱼老汉就能估计鱼塘中鱼的条数.请写出鱼塘中鱼的条数,并说明理由.24.(10分)如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,则DE=________.25.(12分)在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?

参考答案一、选择题(每题4分,共48分)1、D【解析】设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选D.2、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax2+bx+c(a≠1)的图象与x轴有两个交点,∴b2﹣4ac>1,故①正确;∵该函数图象的对称轴是x=﹣1,当x=1时的函数值小于﹣1,∴x=﹣2时的函数值和x=1时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵1,∴b=2a.∵x=1时,y=a+b+c>1,∴3a+c>1,故⑤错误.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.3、A【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.4、D【分析】要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,设点的坐标是,则,,,,,,,,,,,,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.5、A【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6、A【分析】根据一元二次方程的定义进行判断.【详解】A、符合题意;B、是一元一次方程,不符合题意;C、是二元一次方程,不符合题意;D、是分式方程,不符合题意;故选A.【点睛】本题考查一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.7、D【解析】如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴,设点B为(a,),A为(b,),则OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根据勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8、A【分析】利用余弦的定义可知,代入数据即可求出AC.【详解】∵∴故选A.【点睛】本题考查根据余弦值求线段长度,熟练掌握余弦的定义是解题的关键.9、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且,

则.

故选:A.【点睛】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.10、D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.11、C【分析】根据根的判别式,可得答案.【详解】解:a=1,b=-3,c=,

Δ=b2−4ac=9−4×1×=0∴当的值在的基础上减小时,即c﹤,Δ=b2−4ac>0∴一元二次方程有两个不相等的实数根,

故选C.【点睛】本题考查了根的判别式的应用,能熟记根的判别式的内容是解此题的关键.12、A【解析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交.故选A.考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值.二、填空题(每题4分,共24分)13、【分析】根据相似三角形的性质,即可求解.【详解】∵,相似比为,∴与,的面积比等于4:1,∵的面积为,∴的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.14、m【分析】根据余弦的定义计算,得到答案.【详解】在Rt△ABC中,cosA=,∴AB=,故答案为:m.【点睛】本题考查了三角函数的问题,掌握三角函数的定义以及应用是解题的关键.15、2【解析】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3-1=2.16、≠±1【分析】方程是一元二次方程的条件是二次项次数不等于0,据此即可求得a的范围.【详解】根据题意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.17、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.18、【解析】解:,.三、解答题(共78分)19、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.20、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠;当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【分析】(1)根据“费用=每台费用台数”分别建立等式即可;(2)分别根据求解即可;(3)先列出运费与a的关系式,再根据函数的性质求出最值即可.【详解】(1)由题意得:;(或);(或)(2)设学校购买台电脑,若两家商场收费相同,则:,(或)解得即当购买台时,两家商场的收费相同;若到甲商场购买更优惠,则:解得即当购买电脑台数大于时,甲商场购买更优惠;若到乙商场购买更优惠,则:解得即当购买电脑台数小于时,乙商场购买更优惠;(3)由题意得,当取最大时,费用最小甲商场只有台取4,此时故从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【点睛】本题考查了一次函数的性质与应用,依据题意正确建立函数关系式是解题关键.21、(1)抛物线的解析式为;(2)①P点坐标为P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B两点的坐标,从而利用待定系数法求出二次函数解析式即可.(2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,从而得出最值即可.【详解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵抛物线过原点,设抛物线的解析式为y=ax2+bx.∴,解得:.∴抛物线的解析式为.(2)①设直线AB的解析式为y=kx+b.∴,解得:.∴直线AB的解析式为.∴C点坐标为(0,).∵直线OB过点O(0,0),B(2,﹣2),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x).(i)当OC=OP时,,解得(舍去).∴P1().(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2().(iii)当OC=PC时,由,解得(舍去).∴P2().综上所述,P点坐标为P1()或P2()或P2().②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH=DQ(OG+GH)==.∵0<x<2,∴当时,S取得最大值为,此时D().【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解一元二次方程、图形的面积计算等,其中(2)要注意分类求解,避免遗漏.22、(1)见解析;(2)【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的判定定理得到OD∥AC,求得∠ODE=∠F,根据等腰三角形的性质得到∠OED=∠ODE,等量代换得到∠OED=∠F,于是得到结论;

(2)根据平行得出,再由可得到关于BE的方程,从而得出结论.【详解】(1)证明:连接,∵切于点,∴.∴.又,∴,∴.∵,∴,∴.∴.(2)解:∵,∴,∴.∵,∴,∴,∴.【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,等腰三角形的判定与性质等知识,正确的作出辅助线是解题的关键.23、.【分析】设鱼塘中鱼的条数为x,根据两次打捞的鱼中身上有记号的鱼的概率相等建立方程,然后求解即可得.【详解】设鱼塘中鱼的条数为x由题意和简单事件的概率计算可得:解得:经检验,是所列分式方程的解答:鱼塘中鱼的条数为.【点睛】本题考查了简单事件的概率计算、分式方程的实际应用,依据题意,正确建立方程是解题关键.24、(1)见解析;(2)见解析;(3).【分析】(1)连接AD,由直径所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论