




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第21页(共21页)2022年内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.(3分)﹣5的绝对值是(D)A.﹣ B.﹣5 C. D.52.(3分)下列图案中,不是轴对称图形的是(A)A. B. C. D.3.(3分)同种液体,压强随着深度增加而增大.7km深处海水的压强为72100000Pa,数据72100000用科学记数法表示为(C)A.7.21×106 B.0.721×108 C.7.21×107 D.721×1054.(3分)解不等式组时,不等式①、②的解集在同一数轴上表示正确的是(A)A. B. C. D.5.(3分)下面几何体的俯视图是(B)A. B. C. D.6.(3分)如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是(C)A.(﹣3,2) B.(0,4) C.(﹣1,3) D.(3,﹣1)7.(3分)下列运算正确的是(C)A.a3+a2=a5 B.a2•a3=a6 C.2a•3a2=6a3 D.(﹣a4)3=﹣a78.(3分)下列说法正确的是(D)A.调查某班学生的视力情况适合采用随机抽样调查的方法 B.声音在真空中传播的概率是100% C.甲、乙两名射击运动员10次射击成绩的方差分别是S甲2=2.4,S乙2=1.4,则甲的射击成绩比乙的射击成绩稳定 D.8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和59.(3分)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是(D)A.四边形ABCD周长不变 B.AD=CD C.四边形ABCD面积不变 D.AD=BC10.(3分)某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,绘制的不完整统计图如下,则下列说法中不正确的是(B)A.这次调查的样本容量是200 B.全校1600名学生中,估计最喜欢体育课外活动的大约有500人 C.扇形统计图中,科技部分所对应的圆心角是36° D.被调查的学生中,最喜欢艺术课外活动的有50人故11.(3分)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为(A)A.13 B.8 C.﹣3 D.5【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.12.(3分)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为(D)A.10cm B.20cm C.5cm D.24cm【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.13.(3分)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A(﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是(A)A.3 B.5 C.2 D.【解答】解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A.14.(3分)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为(C)A.2π B.2 C.2π﹣4 D.2π﹣2【解答】解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,∴∠BCE=90°﹣∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=2,∴S阴影=S扇形OEC﹣S△OEC=﹣×=2π﹣4,故选:C.二、填空题(请把答案填写在答题卡相应的横线上.每小题3分,共12分)15.(3分)分解因式:2x3+4x2+2x=2x(x+1)2.【16.(3分)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是①③④.(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min④王强骑自行车的平均速度是0.2km/min17.(3分)如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O处,然后观测者沿着水平直线BO后退到点D,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD=1.7m,BD=11m,则旗杆AB的高度约为17m.(结果取整数,≈1.7)18.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).【解答】解:把点D(m,m+1)代入抛物线y=﹣x2﹣6x﹣5中得:m+1=﹣m2﹣6m﹣5,解得:m1=﹣1,m2=﹣6,∴D(﹣1,0)或(﹣6,﹣5),当y=0时,﹣x2﹣6x﹣5=0,∴x=﹣1或﹣5,∴A(﹣5,0),B(﹣1,0),当x=0时,y=﹣5,∴OC=OA=5,∴△AOC是等腰直角三角形,∴∠OAC=45°,①如图1,D(﹣1,0),此时点D与B重合,连接AD',∵点D与D'关于直线AC对称,∴AC是BD的垂直平分线,∴AB=AD'=﹣1﹣(﹣5)=4,且∠OAC=∠CAD'=45°,∴∠OAD'=90°,∴D'(﹣5,﹣4);②如图2,D(﹣6,﹣5),∵点D(m,m+1),∴点D在直线y=x+1上,此时直线y=x+1过点B,∴BD⊥AC,即D'在直线y=x+1上,∵A(﹣5,0),C(0,﹣5),则直线AC的解析式为:y=﹣x﹣5,∵﹣x﹣5=x+1,∴x=﹣3,∴E(﹣3,﹣2),∵点D与D'关于直线AC对称,∴E是DD'的中点,∴D'(0,1),综上,点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).故答案为:(﹣5,﹣4)或(0,1).三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(10分)先化简,再求值:(1+)÷,其中a=()﹣1+4cos45°.【解答】解:(1+)÷=•=•=3(a﹣1)=3a﹣3,当a=()﹣1+4cos45°=2﹣2+4×=2﹣2+2=2时,原式=3×2﹣3=3.20.(10分)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.21.(12分)为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为50分.根据测试成绩,绘制出不完整的频数分布表和不完整的频数分布直方图如下:组别成绩x(分)频数(人数)第一组5≤x<151第二组15≤x<255第三组25≤x<3512第四组35≤x<45m第五组45≤x<5514请结合图表完成下列各题:(1)求表中m的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为达标,则本次测试的达标率是多少?(4)第三组12名学生中有A、B、C、D四名女生,现将这12名学生平均分成两组进行竞赛练习,每组两名女生,请用画树状图法或列表法求B、C两名女生分在同一组的概率.【解答】解:(1)m=50﹣1﹣5﹣12﹣14=18;(2)如图,(3)本次测试的达标率为×100%=64%;(4)画树状图为:共用12种等可能的结果,其中B、C两名女生分在同一组的结果数为4,所以B、C两名女生分在同一组的概率==.22.(12分)某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A、B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?【解答】解:(1)设A种苗木有x株,B种苗木有y株,根据题意,得,解得,答:A种苗木有2400株,B种苗木有3600株;(2)设安排m人种植A种苗木,根据题意,得,解得m=100,经检验,m=100是原方程的根,且符合题意,350﹣m=350﹣100=250(人),答:应安排100人种植A种苗木,250人种植B种苗木,才能确保同时完成任务.23.(12分)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=1;②min|﹣,﹣4|=﹣4.(2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.【解答】解:(1)由题意可知:①min|(﹣3)0,2|=1,②min|﹣,﹣4|=﹣4;故答案为:1,﹣4.(2)当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2=﹣2x﹣3,∵一次函数y2=﹣2x+b,∴b=﹣3,∴y2=﹣2x﹣3,当x=﹣2时,y=1,∴A(﹣2,1)将A点代入y1=中,得k=﹣2,∴y1=﹣.24.(12分)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.【解答】(1)证明:∵AC=BC,点O为AB的中点,∴CO⊥AB.∵DF是AC的垂直平分线,∴DC=DA,∴∠DCA=∠DAC.∵∠DCA=∠OCA,∴∠DAC=∠OCA.∴DA∥OC,∴DA⊥OA.∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:在△CDE和△CFE中,,∴△CDE≌△CFE(ASA),∴CD=CF=6,∴CO=CF+OF=10.∵DF是AC的垂直平分线,∴CE=AE=AC.∵∠CEF=∠COA=90°,∠ECF=∠OCA,∴△CEF∽△COA,∴,∴,∴AC=2,在Rt△AOC中,∵cos∠OCA=,∴cos∠DAC=cos∠OCA=.25.(14分)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD=4m,宽AB=1m的长方形水池ABCD进行加长改造(如图①,改造后的水池ABNM仍为长方形,以下简称水池1).同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y1=x+4(x>0);设水池2的边EF的长为x(m)(0<x<6),面积为y2(m2),则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是3≤x<6(可省略单位),水池2面积的最大值是9m2;(2)在图③字母标注的点中,表示两个水池面积相等的点是C,E,此时的x(m)值是1或4;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是0<x<1或4<x<6;(4)在1<x<4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积y3(m2)关于x(m)(x>0)的函数解析式为:y3=x+b(x>0).若水池3与水池2的面积相等时,x(m)有唯一值,求b的值.【解答】解:(1)∵y2=﹣x2+6x=﹣(x﹣3)2+9,又∵﹣1<0,∴抛物线的开口方向向下,当x≥3时,水池2的面积随EF长度的增加而减小,∵0<x<6,∴当3≤x<6时,水池2的面积随EF长度的增加而减小,水池2面积的最大值是9m2.故答案为:3≤x<6;9;(2)由图象可知:两函数图象相交于点C,E,此时两函数的函数值相等,即:x+4=﹣x2+6x,解得:x=1或4,∴表示两个水池面积相等的点是:C,E,此时的x(m)值是:1或4.故答案为:C,E;1或4;(3)由图象知:图象中点C的左侧部分和点E的右侧部分,一次函数的函数值大于二次函数的函数值,即当0<x<1或4<x<6时,水池1的面积大于水池2的面积,故答案为:0<x<1或4<x<6;(4)在抛物线上的CE段上任取一点F,过点F作FG∥y轴交线段CE于点G,则线段FG表示两个水池面积差,设F(m,﹣m2+6m),则G(m,m+4),∴FG=(﹣m2+6m)﹣(m+4)=﹣m2+5m﹣4=﹣+,∵﹣1<0,∴当m=时,FG有最大值为.∴在1<x<4范围内,两个水池面积差的最大值为,此时x的值为;(5)∵水池3与水池2的面积相等,∴y3=y2,即:x+b=﹣x2+6x,∴x2﹣5x+b=0.∵若水池3与水池2的面积相等时,x(m)有唯一值,∴Δ=(﹣5)2﹣4×1×b=0,解得:b=.∴若水池3与水池2的面积相等时,x(m)有唯一值,b的值为米.26.(14分)同学们还记得吗?图①,图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:【问题一】如图①,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F,则AE与BF的数量关系为AE=BF;【问题二】受图①启发,兴趣小组画出了图③:直线m、n经过正方形ABCD的对称中心O,直线m分别与AD、BC交于点E、F,直线n分别与AB、CD交于点G、H,且m⊥n,若正方形ABCD边长为8,求四边形OEAG的面积;【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG的顶点G在正方形ABCD的边CD上,顶点E在BC的延长线上,且BC=6,CE=2.在直线BE上是否存在点P,使△APF为直角三角形?若存在,求出BP的长度;若不存在,说明理由.【解答】解:【问题一】∵正方形ABCD的对角线相交于点O,∴OA=OB,∠OAB=∠OBA=45°,∠AOB=90°,∵四边形A1B1C1O是正方形,∴∠EOF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网医疗平台在线问诊患者健康档案管理报告
- 浙江电商仓库租赁协议书
- 村级道路协管员协议合同
- 移动员工合同续签协议书
- 美业入股协议合同书模板
- 高速公路护坡合同协议书
- 潮州打印机租赁协议合同
- 汝州市餐饮分包协议合同
- 派出所要求监控合同范本
- 物品回收后加工合同范本
- 煤矿掘进技术员考试卷(答案)
- 净水器工作原理课件
- 可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定
- DL∕T 2055-2019 输电线路钢结构腐蚀安全评估导则
- AUMA澳玛执行器内部培训课件
- 《全家便利店》第二课
- 多能工管理办法
- CarSim-介绍PPT课件
- 波峰焊作业指导书
- 武汉市市级预算单位银行账户和资金管理暂行办法
- 美能达DIMAGE A1相机中文说明书
评论
0/150
提交评论