2022年人教版下册九2022年级数学第26章反比例函数训练题(Word版含解析)_第1页
2022年人教版下册九2022年级数学第26章反比例函数训练题(Word版含解析)_第2页
2022年人教版下册九2022年级数学第26章反比例函数训练题(Word版含解析)_第3页
2022年人教版下册九2022年级数学第26章反比例函数训练题(Word版含解析)_第4页
2022年人教版下册九2022年级数学第26章反比例函数训练题(Word版含解析)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第26章反比例函数训练题—2020年中考真题汇编一.选择题(共18小题)1.(2020•衡阳)反比例函数y=经过点(2,1),则下列说法错误的是()A.k=2 B.函数图象分布在第一、三象限 C.当x>0时,y随x的增大而增大 D.当x>0时,y随x的增大而减小2.(2020•内江)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A. B. C.3 D.43.(2020•黑龙江)如图,正方形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣14.(2020•河南)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y3>y1 C.y1>y3>y2 D.y3>y2>y15.(2020•滨州)如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.126.(2020•德州)函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A. B. C. D.7.(2020•苏州)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,) B.(,3) C.(5,) D.(,)8.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣ B.﹣ C.﹣2 D.﹣9.(2020•重庆)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6 B.12 C.18 D.2410.(2020•无锡)反比例函数y=与一次函数y=的图象有一个交点B(,m),则k的值为()A.1 B.2 C. D.11.(2020•自贡)函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A. B. C. D.12.(2020•重庆)如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A. B.8 C.10 D.13.(2020•上海)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y= B.y=﹣ C.y= D.y=﹣14.(2020•黔东南州)如图,点A是反比例函数y=(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则△PAB的面积为()A.2 B.4 C.6 D.815.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a16.(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣ B.y=﹣ C.y=﹣ D.y=17.(2020•鸡西)如图,A,B是双曲线y=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为点C.若△ODC的面积为1,D为OB的中点,则k的值为()A. B.2 C.4 D.818.(2020•海南)下列各点中,在反比例函数y=图象上的是()A.(﹣1,8) B.(﹣2,4) C.(1,7) D.(2,4)二.填空题(共12小题)19.(2020•安顺)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.20.(2020•泰州)如图,点P在反比例函数y=的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为.21.(2020•哈尔滨)已知反比例函数y=的图象经过点(﹣3,4),则k的值为.22.(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.23.(2020•自贡)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=,前25个等边三角形的周长之和为.24.(2020•滨州)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.25.(2020•甘孜州)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为.26.(2020•成都)在平面直角坐标系xOy中,已知直线y=mx(m>0)与双曲线y=交于A,C两点(点A在第一象限),直线y=nx(n<0)与双曲线y=﹣交于B,D两点.当这两条直线互相垂直,且四边形ABCD的周长为10时,点A的坐标为.27.(2020•常德)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=.28.(2020•宁波)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.29.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=.30.(2020•温州)点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.三.解答题(共3小题)31.(2020•广州)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.32.(2020•大庆)如图,反比例函数y=与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,在第四象限的交点为C,直线AO(O为坐标原点)与函数y=的图象交于另一点B.过点A作y轴的平行线,过点B作x轴的平行线,两直线相交于点E,△AEB的面积为6.(1)求反比例函数y=的表达式;(2)求点A,C的坐标和△AOC的面积.33.(2020•雅安)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≤的解集.第26章反比例函数训练题—2020年中考真题汇编参考答案与试题解析一.选择题(共18小题)1.(2020•衡阳)反比例函数y=经过点(2,1),则下列说法错误的是()A.k=2 B.函数图象分布在第一、三象限 C.当x>0时,y随x的增大而增大 D.当x>0时,y随x的增大而减小【分析】根据反比例函数y=经过点(2,1),可以得到k的值,然后根据反比例函数的性质,即可判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:∵反比例函数y=经过点(2,1),∴1=,解得,k=2,故选项A不符合题意;∵k=2>0,∴该函数的图象在第一、三象限,故选项B不符合题意;当x>0时,y随x的增大而减小,故选项C符合题意、选项D不符合题意;故选:C.【点评】本题考查反比例函数图象上点的坐标特征、反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.2.(2020•内江)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A. B. C.3 D.4【分析】根据题意可知△AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值.【解答】解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.3.(2020•黑龙江)如图,正方形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣1【分析】把B(﹣1,1)代入y=即可得到结论.【解答】解:∵点B在反比例函数y=的图象上,B(﹣1,1),∴1=,∴k=﹣1,故选:D.【点评】本题考查反比例函数图象上点的坐标特征、解答本题的关键是明确题意,利用反比例函数的性质解答.4.(2020•河南)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y3>y1 C.y1>y3>y2 D.y3>y2>y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=6,y2=﹣=﹣3,y3=﹣=﹣2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.5.(2020•滨州)如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【分析】根据双曲线上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:延长BA交y轴于E,则BE⊥y轴,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2020•德州)函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A. B. C. D.【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.【解答】解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.(2020•苏州)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,) B.(,3) C.(5,) D.(,)【分析】求出反比例函数y=,设OB的解析式为y=mx,由OB经过D(3,2),得出OB的解析式为y=x,设C(a,),且a>0,由平行四边形的性质得BC∥OA,S平行四边形OABC=2S△OBC,则B(,),BC=﹣a,代入面积公式即可得出结果.【解答】解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,∵OB经过原点O,∴设OB的解析式为y=mx,∵OB经过点D(3,2),则2=3m,∴m=,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,∴S△OBC=××(﹣a),∴2×××(﹣a)=,解得:a=2或a=﹣2(舍去),∴B(,3),故选:B.【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、平行四边形的性质、三角形面积计算等知识,熟练掌握平行四边形的性质是解题的关键.8.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣ B.﹣ C.﹣2 D.﹣【分析】确定OQ是△ABP的中位线,OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,则(m﹣2)2+(﹣m﹣2)2=32,即可求解.【解答】解:连结BP,点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=,∴k=m(﹣m)=﹣,故选:A.【点评】本题考查的是反比例函数与一次函数的交点问题,确定OQ是△ABP的中位线是本题解题的关键.9.(2020•重庆)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6 B.12 C.18 D.24【分析】如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD∥AE,推出S△ABE=S△AOE=18,推出S△EOF=S△AOE=9,可得S△FME=S△EOF=3,由此即可解决问题.【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM=AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=,∴•ON•AN=•OM•FM,∴ON=OM,∴ON=MN=EM,∴ME=OE,∴S△FME=S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE∥BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=S△AOE=9,∴S△FME=S△EOF=3,∴S△FOM=S△FOE﹣S△FME=9﹣3=6=,∴k=12.故选:B.【点评】本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD∥AE,利用等高模型解决问题,属于中考选择题中的压轴题.10.(2020•无锡)反比例函数y=与一次函数y=的图象有一个交点B(,m),则k的值为()A.1 B.2 C. D.【分析】将点B坐标代入一次函数解析式可求点B坐标,再代入反比例函数解析式,可求解.【解答】解:∵一次函数y=的图象过点B(,m),∴m=×+=,∴点B(,),∵反比例函数y=过点B,∴k=×=,故选:C.【点评】本题考查了反比例函数与一次函数的交点问题,掌握图象上点的坐标满足图象解析式是本题的关键.11.(2020•自贡)函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A. B. C. D.【分析】首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.【解答】解:根据反比例函数的图象位于一、三象限知k>0,根据二次函数的图象确知a<0,b<0,∴函数y=kx﹣b的大致图象经过一、二、三象限,故选:D.【点评】本题考查了函数的图象的知识,解题的关键是了解三种函数的图象的性质,难度不大.12.(2020•重庆)如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A. B.8 C.10 D.【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCP+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.13.(2020•上海)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y= B.y=﹣ C.y= D.y=﹣【分析】已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=,再将点的坐标代入求出待定系数k的值,从而得出答案.【解答】解:设反比例函数解析式为y=,将(2,﹣4)代入,得:﹣4=,解得k=﹣8,所以这个反比例函数解析式为y=﹣,故选:D.【点评】本题主要考查待定系数法求反比例函数解析式,用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.14.(2020•黔东南州)如图,点A是反比例函数y=(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则△PAB的面积为()A.2 B.4 C.6 D.8【分析】连接OA、OB、PC.由于AC⊥y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S△APC=S△AOC=3,S△BPC=S△BOC=1,然后利用S△PAB=S△APC﹣S△APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC=×|6|=3,S△BPC=S△BOC=×|2|=1,∴S△PAB=S△APC﹣S△BPC=2.故选:A.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了三角形的面积.15.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,∴函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.16.(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣ B.y=﹣ C.y=﹣ D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,过C作CE⊥OB于E,则∠OCE=30°,∴OE=OC=1,CE=,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标.17.(2020•鸡西)如图,A,B是双曲线y=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为点C.若△ODC的面积为1,D为OB的中点,则k的值为()A. B.2 C.4 D.8【分析】过点B作BE⊥x轴于点E,根据反比例函数系数k的几何意义,可知S△BOE=k,由D为OB的中点,CD∥BE,可知CD是△OBE的中位线,CD=BE,那么△ODC∽△OBE,根据相似三角形面积比等于相似比的平方得出S△ODC=S△BOE=k=1,即可求出k的值.【解答】解:过点B作BE⊥x轴于点E,则S△BOE=k.∵D为OB的中点,CD∥BE,∴CD是△OBE的中位线,CD=BE,∴△ODC∽△OBE,∴=()2=,∴S△ODC=S△BOE=k=1,∴k=8.故选:D.【点评】本题考查的是反比例函数系数k的几何意义,熟知反比例函数y=图象中任取一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变是解答此题的关键.18.(2020•海南)下列各点中,在反比例函数y=图象上的是()A.(﹣1,8) B.(﹣2,4) C.(1,7) D.(2,4)【分析】由于反比例函数y=中,k=xy,即将各选项横、纵坐标分别相乘,其积为8者即为正确答案.【解答】解:A、∵﹣1×8=﹣8≠8,∴该点不在函数图象上,故本选项错不合题意;B、∵﹣2×4=﹣8≠8,∴该点不在函数图象上,故本选项不合题意;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项不合题意;D、2×4=8,∴该点在函数图象上,故本选项符合题意.故选:D.【点评】此题考查了反比例函数图象上点的坐标特征,将横、纵坐标分别相乘其积为k者,即为反比例函数图象上的点.二.填空题(共12小题)19.(2020•安顺)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OBAC.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.20.(2020•泰州)如图,点P在反比例函数y=的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为3.【分析】点P在反比例函数y=的图象上,且横坐标为1,则点P(1,3),则点A、B的坐标分别为(1,k),(k,3),即可求解.【解答】解:点P在反比例函数y=的图象上,且横坐标为1,则点P(1,3),则点A、B的坐标分别为(1,k),(k,3),设直线AB的表达式为:y=mx+t,将点A、B的坐标代入上式得,解得m=﹣3,故直线AB与x轴所夹锐角的正切值为3,故答案为3.【点评】本题考查的是反比例函数与一次函数的交点问题,确定点A、B的坐标是解题的关键.21.(2020•哈尔滨)已知反比例函数y=的图象经过点(﹣3,4),则k的值为﹣12.【分析】把(﹣3,4)代入函数解析式y=即可求k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.【点评】本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.22.(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.【点评】本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.23.(2020•自贡)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4,前25个等边三角形的周长之和为60.【分析】设直线y=﹣x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.首先证明∠ADO=60°,可得AB=2BE,AC=2CF,由直线y=﹣x+b与双曲线y=在第一象限交于点B、C两点,可得﹣x+b=,整理得,﹣x2+bx﹣k=0,由韦达定理得:x1x2=k,即EB•FC=k,由此构建方程求出k即可,第二个问题分别求出第一个,第二个,第三个,第四个三角形的周长,探究规律后解决问题.【解答】解:设直线y=﹣x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=﹣x+b,∴当y=0时,x=b,即点D的坐标为(b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=﹣b.∵在Rt△AOD中,tan∠ADO==,∴∠ADO=60°.∵直线y=﹣x+b与双曲线y=在第三象限交于B、C两点,∴﹣x+b=,整理得,﹣x2+bx﹣k=0,由韦达定理得:x1x2=k,即EB•FC=k,∵=cos60°=,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=k=16,解得:k=4.由题意可以假设D1(m,m),∴m2•=4,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)•n=4,解得n=2﹣2,∴E1E2=4﹣4,即第二个三角形的周长为12﹣12,设D3(4+a,a),由题意(4+a)•a=4,解得a=2﹣2,即第三个三角形的周长为12﹣12,…,∴第四个三角形的周长为12﹣12,∴前25个等边三角形的周长之和12+12﹣12+12﹣12+12﹣12+…+12﹣12=12=60,故答案为:4,60.【点评】本题考查了反比例函数与一次函数图象的交点问题,规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.24.(2020•滨州)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=.【分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.【解答】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.【点评】本题考查的是反比例函数与一次函数的交点问题,解题的关键是通过正比例函数确定交点的坐标,进而求解.25.(2020•甘孜州)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为2或.【分析】分点P在AB下方、点P在AB上方两种情况,分别求解即可.【解答】解:①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则△ABP的面积是△AOB的面积的2倍,直线AB与x轴交点的坐标为(﹣1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为:y=x+b,将点C的坐标代入上式并解得:b=﹣1,故直线l的表达式为y=x﹣1①,而反比例函数的表达式为:y=②,联立①②并解得:x=2或﹣1(舍去);②当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3③,联立②③并解得:x=(舍去负值);故答案为:2或.【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.26.(2020•成都)在平面直角坐标系xOy中,已知直线y=mx(m>0)与双曲线y=交于A,C两点(点A在第一象限),直线y=nx(n<0)与双曲线y=﹣交于B,D两点.当这两条直线互相垂直,且四边形ABCD的周长为10时,点A的坐标为(,2)或(2,).【分析】法一:求出点A、D、B的坐标,则AD2=AB2==+5m=BC2=CD2,进而求解.法二:利用对称性证明四边形是菱形即可.【解答】解:法一:联立y=mx(m>0)与y=并解得:,故点A的坐标为(,2),联立y=nx(n<0)与y=﹣同理可得:点D(,﹣),点B(﹣,),或点B(,﹣),点D(﹣,),∵这两条直线互相垂直,则mn=﹣1,则AD2=(﹣)2+(2+)2=+5m,同理可得:AB2=+5m=AD2=BC2=CD2,则AB=×10,即AB2==+5m,解得:m=2或,故点A的坐标为(,2)或(2,),法二:由反比例函数与正比例函数的交点关于原点对称,可得四边形的对角线相互平分,从而判定四边形ABCD为平行四边形,再有两条直线互相垂直,即四边形的对角线相互垂直可判定平行四边形ABCD为菱形,所以四条边都相等,接下来方法同上.故答案为:(,2)或(2,).【点评】本题考查的是反比例函数与一次函数的交点问题,解题的关键是求出A、B、D的坐标,确定AB=AD,进而求解.27.(2020•常德)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12.【分析】根据反比例函数比例系数的几何意义即可解决问题.【解答】解:∵AB⊥OB,∴S△AOB==6,∴k=±12,∵反比例函数的图象在第二象限,∴k<0,∴k=﹣12,故答案为﹣12.【点评】本题考查反比例函数系数k的几何意义,解题的关键是熟练掌握基本知识,属于中考常考题型.28.(2020•宁波)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,的值为﹣.【分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解答】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=3:1,∴BC:AD=1:3,∴TB:TA=1:3,设BT=m,则AT=3m,AK=TK=,BK=,∴AK:BK=3:1,∴==3,∴=﹣3,即=﹣,故答案为24,﹣.【点评】本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.29.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=40.【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=3,在Rt△FMN中,∠MFN=30°,∴FN=MN=3,∴AN=MB=8﹣3=5,设OA=x,则OB=x+3,∴F(x,8),M(x+3,5),又∵点F、M都在反比例函数的图象上,∴8x=(x+3)×5,解得,x=5,∴F(5,8),∴k=5×8=40.故答案为:40.【点评】考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.30.(2020•温州)点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.【分析】设CD=DE=OE=a,则P(,3a),Q(,2a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论