总氮提标的调试过程及总结_第1页
总氮提标的调试过程及总结_第2页
总氮提标的调试过程及总结_第3页
总氮提标的调试过程及总结_第4页
总氮提标的调试过程及总结_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

———总氮提标的调试过程及总结!一、污水处理厂规模及工艺

该污水处理厂上游许多工业厂,偷排状况较为严峻。前处理单元分别包括粗格栅及进水泵房、细格栅及曝气沉砂池等一组系统。曝气沉砂池出水进入主生化段。主生化段采纳AA/O(设置预缺氧)生化反应工艺。后深度处理系统包括二沉、转盘滤池及次氯酸钠消毒,同时采纳地埋式结构设计,并对生活污水产生的臭气进行集中收集处置。该厂设计10000m³/d,目前实际运行水量约为8000m³/d左右。出水总氮18-20mg/l,其他指标满意《城镇污水厂污染物排放标准》一级A排放要求。目前进、出水数据见下表(未投加碳源)。政府要求限期整改,15天内由一级A标准,提高至总氮特排标准(出水总氮小于10mg/l)。但水厂目前处于系统冲击恢复期,总氮去除率低,短期时间内,无法满意特排出水标准。实际数据见下表:

二、调试过程

1、预备工作

12月2日,正式入驻水厂,对现场具体考察与评估后,在不影响厂方正常生产的前提下,对原有碳源投加体系进行了改造与优化:生化池新铺设30余米输送管道、新增设置计量掌握的碳源投加点2个。

当日下午,正式开头投加复合碳源,开头掌握、测定全流程点位条件指标及工况;整理并确认现场工艺及水质数据。

2、生产性投加试用过程

调试周期:12月2日—12月13日

1)碳源投加初期(12月2日-12月7日)

12月3日早,到厂检测二沉池出水硝酸盐氮,相比较前一天数据无明显变化。取生化池污泥,进行反硝化反应小试验,结果显示其脱氮效率很差,生化系统内的反硝化细菌量很少,需进行培菌,富集反硝化细菌。

对其生化系统操作如下:降低内回流流量(2倍回流比),增加缺氧区实际停留时间,严控PH、溶解氧,协作投加碳源来富集反硝化细菌,强化脱氮力量。同时,掌握碳源投加量在400公斤/天(100万COD当量)。

观看镜检及SV30:镜检只发觉魔门虫与钟虫,菌胶团伸出丝状菌,魔门虫躯壳较多。SV30发觉上清液含有部分悬浮细碎污泥絮体。考虑目前恢复期,正处于富集反硝化细菌的培育阶段,降低好氧末端溶解氧至2.5-3mg/l,尽量削减操作,避开操作造成生化系统的波动。

12月5日,反硝化试验明显发觉反硝化气泡增多,脱氮效率明显提升,生化系统培菌有初步效果。

12月7日,系统出水的化验总氮数据已经较低至13mg/l,并持续降低中。

2)工艺改动阶段(12月8日-12月13日)

12月8日,镜检观看到部分丝状菌伸出菌胶团,可见魔门虫、钟虫、累枝虫、轮虫、聚缩虫及游泳型纤毛虫等,微生物种类较以往丰富。沉降比30%,MLSS2700mg/l,活性污泥中生物种群在丰富,生物活性在增加,处理效率在提高,暂停排泥,保障生物繁殖和适应。将碳源投加量提升至500公斤/天。

12月10日,生化系统出水总氮保持在9mg/l,停止了降低趋势。查找缘由得知当前缺氧区停留时间仅有3小时。将系统的内回流出口调整至厌氧区,以扩大缺氧区,强化系统的脱氮力量。

12月11日,生化系统出水总氮降低趋势恢复。

12月13日,测得生化缺氧区末端硝酸盐氮已经低于1mg/l,提升内回流流量,将原有2倍回流比,提升至2.5倍。

12月14日,系统出水总氮,已经达到5mg/l。

三、数据汇总

1、进出水数据曲线

(1)总进出水COD、TN指标

(2)系统进出水总磷

2、调试之前生化系统污泥生物相

镜检发觉菌胶团有丝伸出菌胶团,只看到摩门虫和钟虫,菌胶团较为松散。

3、调试之后生化系统污泥生物相

投加碳源后,镜检观看到菌胶团更为紧实,伸出的丝状菌量削减,微生物种类增多,低等至高等微生物皆可见,且活性很好。

四、数据分析

1、本次生产性试用期间为冬季低温期,最低气温接近0℃,水温在16℃左右(现13℃);

2、试用期间进水负荷略有波动,COD维持在140—180mg/L,总氮在32—45mg/L间波动;TN由20mg/L降低到5mg/l水平,证明外加碳源基本完全被生化系统充分利用,总氮去除达到预期效果。

3、调试期间可观看到,虽然培育时间较短,但系统出水的总磷,仍旧消失下降趋势,显现出较强的帮助除磷力量。1个月后,对水厂进行考察时,总磷浓度已经降低到0.1mg/l。

4、调试期间,在较低水温条件下,生化系统污泥浓度、生物种群、生物活性、生物胶团状态、沉降性能及污泥产量都得到相对稳定的维持。

五、调试运行问题的探讨

根据冬季低温低碳源的水质条件(13℃),8000吨/日的处理水量,依据试验得出结论预估:系统出水TN掌握在6mg/L左右时,生化池需要投加碳源最大量约500公斤/日。

1、碳源投加点的选择及投加量合理性推断

外加碳源的投加使用需要依据外加碳源的性能做投加点的相应调整。投加点的靠前(反应停留时间延长)是对反硝化进行的彻底性有利的。投加点选择基于以下几个条件的综合评判:

A、反应停留时间

B、硝态氮浓度(进水、回流消化液流量和浓度等)

C、溶氧状态(选择溶氧稳定低于0.3mg/l)

D、混合状态(匀称混合并流态清楚)

E、脱氮和除磷的兼顾(释磷菌与反硝化细菌对碳源的抢夺调配)

F、原水内碳源利用状况(生化段进水COD利用降解梯度)

结合污水厂系统的工艺及实际运行状况,进水与外回流混合后溶液的硝态氮浓度高于8mg/l,预缺氧溶解氧过高,无法发挥反硝化作用。厌氧段未添加外加碳源的状况下,厌氧出水硝态氮浓度维持在8mg/l左右,表明厌氧段反硝化作用缺失,给缺氧段反硝化脱氮带来压力。因此,调试过程中,考虑设置硝化液回流至厌氧段,选择溶解氧较低且硝酸盐氮浓度较高位置进行碳源补充,利用厌氧段的停留时间及高效的碳源来促进厌氧区硝态氮还原,降低厌氧出水硝态氮浓度。未充分消耗的碳源流入缺氧段,连续用于反硝化脱氮及释磷反应。(实际使用状况表明,厌氧出水硝态氮浓度明显降低)。更改硝化液回流点及外碳源投加点的操作,是尽量提前碳源的加入点,延长反硝化时间,强化反硝化反应的脱氮效率,增加脱氮的肯定数量,从而整体降低好氧末端的出水硝态氮(或TN)浓度。

合理调整内外回流的回流量,回流量的调整变化导致缺氧段水力流速的变化,以及回流至缺氧段的硝态氮肯定数量。停留时间、碳源投加量、水力流速及反应速率和效率的最优调整将能确定厌氧、缺氧区硝态氮的肯定去除量。依据试验期各种调整的数据,大致可以推断:经过12天试验,碳源投加到厌氧区,实现强化反硝化的状况下,内回流比以200%-250%左右为综合最优。

投加量合理性推断:依据前馈、中馈和后馈综合推断。COD及硝酸盐氮的过程指标数据来推断。缺氧末端硝态氮≤1mg/l,厌氧区硝酸盐氮3-4mg/l,好氧末端硝态氮3h。

就污水处理厂目前水质及总体运行状况而言,出水总氮是否接近并小于内控指标、缺氧出水硝酸盐氮是否<1mg/l,好氧末端出水是否<8mg/l是推断水厂运行是否合理的参考标准。

一、污水处理厂规模及工艺

该污水处理厂上游许多工业厂,偷排状况较为严峻。前处理单元分别包括粗格栅及进水泵房、细格栅及曝气沉砂池等一组系统。曝气沉砂池出水进入主生化段。主生化段采纳AA/O(设置预缺氧)生化反应工艺。后深度处理系统包括二沉、转盘滤池及次氯酸钠消毒,同时采纳地埋式结构设计,并对生活污水产生的臭气进行集中收集处置。该厂设计10000m³/d,目前实际运行水量约为8000m³/d左右。出水总氮18-20mg/l,其他指标满意《城镇污水厂污染物排放标准》一级A排放要求。目前进、出水数据见下表(未投加碳源)。政府要求限期整改,15天内由一级A标准,提高至总氮特排标准(出水总氮小于10mg/l)。但水厂目前处于系统冲击恢复期,总氮去除率低,短期时间内,无法满意特排出水标准。实际数据见下表:

二、调试过程

1、预备工作

12月2日,正式入驻水厂,对现场具体考察与评估后,在不影响厂方正常生产的前提下,对原有碳源投加体系进行了改造与优化:生化池新铺设30余米输送管道、新增设置计量掌握的碳源投加点2个。

当日下午,正式开头投加复合碳源,开头掌握、测定全流程点位条件指标及工况;整理并确认现场工艺及水质数据。

2、生产性投加试用过程

调试周期:12月2日—12月13日

1)碳源投加初期(12月2日-12月7日)

12月3日早,到厂检测二沉池出水硝酸盐氮,相比较前一天数据无明显变化。取生化池污泥,进行反硝化反应小试验,结果显示其脱氮效率很差,生化系统内的反硝化细菌量很少,需进行培菌,富集反硝化细菌。

对其生化系统操作如下:降低内回流流量(2倍回流比),增加缺氧区实际停留时间,严控PH、溶解氧,协作投加碳源来富集反硝化细菌,强化脱氮力量。同时,掌握碳源投加量在400公斤/天(100万COD当量)。

观看镜检及SV30:镜检只发觉魔门虫与钟虫,菌胶团伸出丝状菌,魔门虫躯壳较多。SV30发觉上清液含有部分悬浮细碎污泥絮体。考虑目前恢复期,正处于富集反硝化细菌的培育阶段,降低好氧末端溶解氧至2.5-3mg/l,尽量削减操作,避开操作造成生化系统的波动。

12月5日,反硝化试验明显发觉反硝化气泡增多,脱氮效率明显提升,生化系统培菌有初步效果。

12月7日,系统出水的化验总氮数据已经较低至13mg/l,并持续降低中。

2)工艺改动阶段(12月8日-12月13日)

12月8日,镜检观看到部分丝状菌伸出菌胶团,可见魔门虫、钟虫、累枝虫、轮虫、聚缩虫及游泳型纤毛虫等,微生物种类较以往丰富。沉降比30%,MLSS2700mg/l,活性污泥中生物种群在丰富,生物活性在增加,处理效率在提高,暂停排泥,保障生物繁殖和适应。将碳源投加量提升至500公斤/天。

12月10日,生化系统出水总氮保持在9mg/l,停止了降低趋势。查找缘由得知当前缺氧区停留时间仅有3小时。将系统的内回流出口调整至厌氧区,以扩大缺氧区,强化系统的脱氮力量。

12月11日,生化系统出水总氮降低趋势恢复。

12月13日,测得生化缺氧区末端硝酸盐氮已经低于1mg/l,提升内回流流量,将原有2倍回流比,提升至2.5倍。

12月14日,系统出水总氮,已经达到5mg/l。

三、数据汇总

1、进出水数据曲线

(1)总进出水COD、TN指标

(2)系统进出水总磷

2、调试之前生化系统污泥生物相

镜检发觉菌胶团有丝伸出菌胶团,只看到摩门虫和钟虫,菌胶团较为松散。

3、调试之后生化系统污泥生物相

投加碳源后,镜检观看到菌胶团更为紧实,伸出的丝状菌量削减,微生物种类增多,低等至高等微生物皆可见,且活性很好。

四、数据分析

1、本次生产性试用期间为冬季低温期,最低气温接近0℃,水温在16℃左右(现13℃);

2、试用期间进水负荷略有波动,COD维持在140—180mg/L,总氮在32—45mg/L间波动;TN由20mg/L降低到5mg/l水平,证明外加碳源基本完全被生化系统充分利用,总氮去除达到预期效果。

3、调试期间可观看到,虽然培育时间较短,但系统出水的总磷,仍旧消失下降趋势,显现出较强的帮助除磷力量。1个月后,对水厂进行考察时,总磷浓度已经降低到0.1mg/l。

4、调试期间,在较低水温条件下,生化系统污泥浓度、生物种群、生物活性、生物胶团状态、沉降性能及污泥产量都得到相对稳定的维持。

五、调试运行问题的探讨

根据冬季低温低碳源的水质条件(13℃),8000吨/日的处理水量,依据试验得出结论预估:系统出水TN掌握在6mg/L左右时,生化池需要投加碳源最大量约500公斤/日。

1、碳源投加点的选择及投加量合理性推断

外加碳源的投加使用需要依据外加碳源的性能做投加点的相应调整。投加点的靠前(反应停留时间延长)是对反硝化进行的彻底性有利的。投加点选择基于以下几个条件的综合评判:

A、反应停留时间

B、硝态氮浓度(进水、回流消化液流量和浓度等)

C、溶氧状态(选择溶氧稳定低于0.3mg/l)

D、混合状态(匀称混合并流态清楚)

E、脱氮和除磷的兼顾(释磷菌与反硝化细菌对碳源的抢夺调配)

F、原水内碳源利用状况(生化段进水COD利用降解梯度)

结合污水厂系统的工艺及实际运行状况,进水与外回流混合后溶液的硝态氮浓度高于8mg/l,预缺氧溶解氧过高,无法发挥反硝化作用。厌氧段未添加外加碳源的状况下,厌氧出水硝态氮浓度维持在8mg/l左右,表明厌氧段反硝化作用缺失,给缺氧段反硝化脱氮带来压力。因此,调试过程中,考虑设置硝化液回流至厌氧段,选择溶解氧较低且硝酸盐氮浓度较高位置进行碳源补充,利用厌氧段的停留时间及高效的碳源来促进厌氧区硝态氮还原,降低厌氧出水硝态氮浓度。未充分消耗的碳源流入缺氧段,连续用于反硝化脱氮及释磷反应。(实际使用状况表明,厌氧出水硝态氮浓度明显降低)。更改硝化液回流点及外碳源投加点的操作,是尽量提前碳源的加入点,延长反硝化时间,强化反硝化反应的脱氮效率,增加脱氮的肯定数量,从而整体降低好氧末端的出水硝态氮(或TN)浓度。

合理调整内外回流的回流量,回流量的调整变化导致缺氧段水力流速的变化,以及回流至缺氧段的硝态氮肯定数量。停留时间、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论