2022年重庆育才成功学校九年级数学第一学期期末检测试题含解析_第1页
2022年重庆育才成功学校九年级数学第一学期期末检测试题含解析_第2页
2022年重庆育才成功学校九年级数学第一学期期末检测试题含解析_第3页
2022年重庆育才成功学校九年级数学第一学期期末检测试题含解析_第4页
2022年重庆育才成功学校九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,用尺规作图作的平分线,第一步是以为圆心,任意长为半径画弧,分别交于点;第二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,那么为所作,则说明的依据是()A. B. C. D.2.用配方法解方程时,配方结果正确的是()A. B.C. D.3.下列图形中,不是轴对称图形的是()A. B. C. D.4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁5.下列四个图形中,不是中心对称图形的是()A. B.C. D.6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表。如图是一个根据北京的地理位置设计的圭表,其中,立柱的高为。已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)作为()A. B. C. D.7.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解8.在平面直角坐标系中,反比例函数的图象经过点(1,3),则的值可以为A. B. C. D.9.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是()A.4 B.6 C.8 D.1010.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.11.方程3x2-4x-1=0的二次项系数和一次项系数分别为()A.3和4 B.3和-4 C.3和-1 D.3和112.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖二、填空题(每题4分,共24分)13.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.14.在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于,则可估计这个袋中红球的个数约为__________.15.如图,是⊙的直径,是⊙上一点,的平分线交⊙于,且,则的长为_________.16.如图,圆是锐角的外接圆,是弧的中点,交于点,的平分线交于点,过点的切线交的延长线于点,连接,则有下列结论:①点是的重心;②;③;④,其中正确结论的序号是__________.17.如果一个直角三角形的两条边的长度分别是3cm和4cm,那么这个直角三角形的第三边的长度是____________.18.如图,点、、在上,若,,则________.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.20.(8分)如图,每个小正方形的边长为个单位长度,请作出关于原点对称的,并写出点的坐标.21.(8分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.(1)求的值:(2)若,求的长.22.(10分)组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?23.(10分)已知正比例函数y=-3x与反比例函数y=交于点P(-1,n),求反比例函数的表达式24.(10分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是_______元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为5元的人数所占的圆心角度数是_____度;(3)一周内的零花钱数额为20元的有5人,其中有2名是女生,3名是男生,现从这5人中选2名进行个别教育指导,请用画树状图或列表法求出刚好选中2名是一男一女的概率.25.(12分)如图①,矩形中,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.(1)特殊情形:如图②,发现当过点时,也恰好过点,此时是否与相似?并说明理由;(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设时,的面积为,试用含的代数式表示;①在旋转过程中,若时,求对应的的面积;②在旋转过程中,当的面积为4.2时,求对应的的值.26.在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.(1)如图(1),,,⊙的半径为2,则,;(2)如图(2),已知的一边在轴上,在上,且,,.①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据作图步骤进行分析即可解答;【详解】解:∵第一步是以为圆心,任意长为半径画弧,分别交于点∴AE=AF∵二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,∴CE=DE,AD=AD∴根据SSS可以判定△AFD≌△AED∴(全等三角形,对应角相等)故答案为A.【点睛】本题考查的是用尺规作图做角平分线,明确作图步骤的依据是解答本题的关键.2、A【分析】利用配方法把方程变形即可.【详解】用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.3、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4、B【分析】根据平均数与方差的意义解答即可.【详解】解:,乙与丁二选一,又,选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.5、B【分析】根据中心对称图形的概念,即可求解.【详解】A、是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查中心对称图形的概念掌握它的概念“把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,是解题的关键.6、D【解析】在Rt△ABC中利用正切函数即可得出答案.【详解】解:在Rt△ABC中,tan∠ABC=,∴立柱根部与圭表的冬至线的距离(即BC的长)为=.故选:D.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.7、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.8、B【分析】把点(1,3)代入中即可求得k值.【详解】解:把x=1,y=3代入中得,∴k=3.故选:B.【点睛】本题考查了用待定系数法求反比例函数的解析式,能理解把已知点的坐标代入解析式是解题关键.9、D【分析】延长BE交于点M,连接CM,AC,依据直径所对的圆周角是90度,及等弧对等弦,得到直角三角形BMC和等腰直角三角形BAC,依据等腰直角三角形三边关系,知道要求AB只要求直径BC,直径BC可以在直角三角形BMC中运用勾股定理求,只需要求出BM和CM,依据三个内角是直角的四边形是矩形,可以得到四边形EFCM是矩形,从而得到CM和EM的长度,再用BE+EM即得BM,此题得解.【详解】解:延长BE交于点M,连接CM,AC,∵BC为直径,∴,又∵由得:,∴四边形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵点A是以BC为直径的半圆的中点,∴AB=AC,又∵,∴,∴AB=10.故选:D.【点睛】本题考查了圆周角定理的推理——直径所对的圆周角是90度,矩形的判定与性质,勾股定理,解题的关键是构造两个直角三角形,将已知和待求用勾股定理建立等式.10、D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1−−=.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.11、B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.12、C【分析】必然事件是一定发生的事情,据此判断即可.【详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【点睛】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.二、填空题(每题4分,共24分)13、-【分析】设BC的中点为M,CD交半圆M于点N,连接OM,MN.易证∆BCD是等边三角形,进而得∠OMN=60°,即可求出;再证四边形OMND是菱形,连接ON,MD,求出,利用,即可求解.【详解】设BC的中点为M,CD交半圆M于点N,连接OM,MN.∵四边形ABCD是菱形,∴BD⊥AC,∴两个半圆都经过点O,∵BD=BC=CD=2,∴∆BCD是等边三角形,∴∠BCD=60°,∴∠OCD=30°,∴∠OMN=60°,∴,∵OD=OM=MN=CN=DN=1,∴四边形OMND是菱形,连接ON,MD,则MD⊥BC,∆OMN是等边三角形,∴MD=CM=,ON=1,∴MD×ON=,∴.故答是:-【点睛】本题主要考查菱形的性质和扇形的面积公式,添加辅助线,构造等边三角形和扇形,利用割补法求面积,是解题的关键.14、【分析】根据频率的定义先求出黑球的个数,即可知红球个数.【详解】解:黑球个数为:,红球个数:.故答案为6【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键.15、【分析】连接OD,由AB是直径,得∠ACB=90°,由角平分线的性质和圆周角定理,得到△AOD是等腰直角三角形,根据勾股定理,即可求出AD的长度.【详解】解:连接OD,如图,∵是⊙的直径,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案为:.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,勾股定理,以及等腰直角三角形的性质,解题的关键是掌握圆周角定理进行解题.16、②④【分析】根据三角形重心的定义,即可判断①;连接OD,根据垂径定理和切线的性质定理,即可判断②;由∠ACD=∠BAD,∠CAF=∠BAF,得∠AFD=∠FAD,若,可得∠EAF=∠ADF=∠BAC,进而得,即可判断③;易证∆ACD~∆EAD,从而得,结合DF=DA,即可判断④.【详解】∵是弧的中点,∴∠ACD=∠BCD,即:CD是∠ACB的平分线,又∵AF是的平分线,∴点F不是的重心,∴①不符合题意,连接OD,∵是弧的中点,∴OD⊥AB,∵PD与圆相切,∴OD⊥PD,∴,∴②符合题意,∵是弧的中点,∴∠ACD=∠BAD,∵AF是的平分线,∴∠CAF=∠BAF,∴∠CAF+∠ACD=∠BAF+∠BAD,即:∠AFD=∠FAD,若,则∠AFD=∠AEF,∴∠AFD=∠AEF=∠FAD,∴∠EAF=∠ADF=∠BAC,∴.即:只有当时,才有.∴③不符合题意,∵∠ACD=∠BAD,∠D=∠D,∴∆ACD~∆EAD,∴,又∵∠AFD=∠FAD,∴DF=DA,∴,∴④符合题意.故答案是:②④.【点睛】本题主要考查圆的性质与相似三角形的综合,掌握垂径定理,圆周角定理以及相似三角形的判定与性质定理,是解题的关键.17、5cm或cm【分析】分两种情况:当4cm为直角边时,利用勾股定理求出第三边;当4cm为斜边时,利用勾股定理求出第三边.【详解】∵该三角形是直角三角形,∴①当4cm为直角边时,第三边长为cm;②当4cm为斜边时,第三边长为cm,故答案为:5cm或cm.【点睛】此题考查勾股定理,题中没有确定已知的两条边长是直角边或是斜边,故应分情况讨论,避免漏解.18、【分析】连接OB,先根据OA=OB计算出,再根据计算出,进而计算出,最后根据OB=OC得出即得.【详解】解:连接OB,如下图:∴∴,∵∴∴故答案为:【点睛】本题考查了圆的性质及等腰三角形的性质,解题关键是熟知同圆的半径相等,同弧所对的圆周角是圆心角的一半.三、解答题(共78分)19、(1)证明见解析;(2)BH=.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.20、画图见解析;点的坐标为.【分析】由题意根据平面直角坐标系中,关于原点对称的两个点的坐标特点是横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解:如图:点的坐标为.【点睛】本题考查关于原点对称的知识,关键是掌握关于原点对称的两个点的坐标特点是横坐标,纵坐标都互为相反数,根据点的坐标即可画出对称图形.21、(1);(2)4【分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根据勾股定理即可得出结论.【详解】(1)∵,是斜边的中线,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【点睛】本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键.22、比赛组织者应邀请8个队参赛.【解析】本题可设比赛组织者应邀请x队参赛,则每个队参加(x-1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.解:设比赛组织者应邀请个队参赛.依题意列方程得:,解之,得,.不合题意舍去,.答:比赛组织者应邀请8个队参赛.“点睛”本题是一元二次方程的求法,虽然不难求出x的值,但要注意舍去不合题意的解.23、.【分析】将点P的坐标代入正比例函数y=-3x中,即可求出n的值,然后将P点坐标代入反比例函数y=中,即可求出反比例函数的表达式.【详解】解:将点P的坐标代入正比例函数y=-3x中,得n=-3×(-1)=3,故P点坐标为(-1,3)将点P(-1,3)代入反比例函数y=中,得3=解得:m=2故反比例函数的解析式为:【点睛】此题考查的是求反比例函数的解析式,掌握用待定系数法求反比例函数的解析式是解决此题的关键.24、(1)12;(2)72;(3).【分析】(1)根据加权平均数的计算公式计算即可;(2)用样本中零花钱数额为5元的人数所占比例乘以360°即可;(3)通过列表,求出所有情况及符合题意的情况有多少种,根据概率的计算公式得出答案即可.【详解】解:(1)平均数是(元);故答案为:12;(2)一周内的零花钱数额为5元的人数所占的圆心角度数为:;故答案为:72;(3)表格如下:从这5人中选2名共20种情

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论