版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年普通高等学校招生统一考试上海市数学试题〔文科〕详解总分值150分;考试时间120分钟.一、填空题〔本大题共有14题,总分值56分〕考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否那么一律得零分.1.函数的最小正周期是.考点:三角恒等变形、三角函数的周期解答:因为,所以.难度:容易题2.假设复数,其中是虚数单位,那么.考点:复数的四那么运算,共轭运算解答:此题先根据分配律去括号可简化计算,即难度:容易题3.设常数,函数.假设,那么.考点:解方程、求函数值解答:由难度:容易题4.假设抛物线的焦点与椭圆的右焦点重合,那么该抛物线的准线方程为.考点:圆锥曲线的标准方程解答:知抛物线的焦点坐标为,那么其准线方程为:难度:容易题5.某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.假设高三抽取20名学生,那么高一、高二共需抽取的学生数为.考点:分层抽样解答:高一、高二共有学生2800名,按40:1的比例,需抽取学生数为70人。难度:容易题6.假设实数满足,那么的最小值为.考点:根本不等式解答:,即难度:容易题7.假设圆锥的侧面积是底面积的倍,那么其母线与轴所成的角的大小为〔结果用反三角函数值表示〕.考点:圆锥的侧面展开图解答:如图:难度:容易题8.在长方体中割去两个小长方体后的几何体的三视图如右图,那么切割掉的两个小长方体的体积之和等于.考点:三视图解答:由三视图知,切割掉的两个小长方体可拼成一个长宽高分别为4、3、2的长方体,所以其体积为24.难度:容易题9.设假设是的最小值,那么的取值范围为.考点:函数的单调性及最值 解答:难度:中等题10.设无穷等比数列的公比为,假设,那么.考点:无穷等比数列各项的和解答:难度:中等题11.假设,那么满足的的取值范围是.考点:幂函数的单调性解答:EMBEDEquation.DSMT4∴其定义域为又是增函数,是减函数,是增函数,又,,即为,难度:中等题12.方程在区间上的所有的解的和等于.考点:三角方程解答:难度:中等题13.为强化平安意识,某商场拟在未来的连续天中随机选择天进行紧急疏散演练,那么选择的天恰好为连续天的概率是〔结果用最简分数表示〕.考点:组合、概率解答:未来的连续天中随机选择天的所有情况有种;未来的连续天中选择的天恰好为连续天的所有情况有种;那么所求概率为难度:中等题14.曲线,直线.假设对于点,存在上的点和上的使得,那么的取值范围为.考点:圆的方程、能成立问题解答:∵曲线,即,∵,∴点即为中点;设,∵,那么,∵点在曲线C上,∴难度:较难题二、选择题〔本大题共有4题,总分值20分〕每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否那么一律得零分.15.设,那么“〞是“且〞的〔〕(A)充分非必要条件 (B)必要非充分条件(C)充分必要条件 (D)既非充分又非必要条件考点:充分条件、必要条件解答:必要非充分条件,选B难度:容易题16.互异的复数满足,集合,那么〔〕(A)(B)(C)(D)考点:集合的相等、复数范围内1的立方根解答:⑴假设那么〔舍〕;⑵假设那么,那么〔舍〕或〔舍〕或或综合上述,.选D难度:中等题17.如图,四个边长为的小正方体排成一个大正方形,是大正方形的一条边,是小正方形的其余顶点,那么的不同值的个数为〔〕(A) (B)(C)(D)考点:向量的数量积、向量的投影解答:结合图形,观察在上的投影即可:在上的投影相同;在上的投影相同;在上的投影相同;故的不同值的个数为3,选C难度:中等题18.与是直线〔为常数〕上两个不同的点,那么关于和的方程组的解的情况是〔〕(A)无论如何,总是无解 (B)无论如何,总有唯一解(C)存在,使之恰有两解 (D)存在,使之有无穷多解考点:直线的方程、二元一次方程的行列式解法解答:把代入直线得,即.同理可得.那么是方程组的解.假设不是方程组的唯一解,那么方程组有无数解那么,与矛盾综上,方程组总有唯一解,选B.难度:较难题三、解答题〔本大题共有5题,总分值74分〕解答以下各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.〔此题总分值12分〕底面边长为2的正三棱锥,其外表展开图是三角形,如图,求的各边长及此三棱锥的体积.考点:棱锥的体积、空间想象能力解答:依题意:是边长为4的正三角形,折叠后是棱长为2的正四面体〔如图〕.设顶点在底面内的投影为,连接,那么为的重心,底面.难度:容易题20.〔此题总分值14分〕此题共有2个小题,第1小题总分值6分,第2小题总分值8分.设常数,函数.假设,求函数的反函数;根据的不同取值,讨论函数的奇偶性,并说明理由.考点:反函数、函数的奇偶性解答:〔1〕因为,所以,得或,且.因此,所求反函数为.〔2〕①当时,,定义域为,故函数是偶函数;②当时,,定义域为,,故函数为奇函数;③当且时,定义域为关于原点不对称,故函数既不是奇函数,也不是偶函数.难度:容易题21.〔此题总分值14分〕此题共有2个小题,第1小题总分值6分,第2小题总分值8分.如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米.设点在同一水平面上,从和看的仰角分别为.〔1〕设计中是铅垂方向,假设要求,问的长至多为多少〔结果精确到0.01米〕?〔2〕施工完成后,与铅垂方向有偏差.现在实测得,求的长〔结果精确到0.01米〕.考点:解斜三角形解答:〔1〕设,那么.因,所以,即,〔米〕〔2〕在中,由,,,由正弦定理得,解得〔米〕.在中,由余弦定理得,解得〔米〕.所以,的长约为26.93米.难度:中等题22.〔此题总分值16分〕此题共有3个小题,第1小题总分值3分,第2小题总分值6分,第3小题总分值7分.在平面直角坐标系中,对于直线和点,记.假设,那么称点被直线分隔.假设曲线与直线没有公共点,且曲线上存在点被直线分隔,那么称直线为曲线的一条分隔线.〔1〕求证;点被直线分隔;〔2〕假设直线是曲线的分隔线,求实数的取值范围;〔3〕动点到点的距离与到轴的距离之积为1,设点的轨迹为曲线.求的方程,并证明轴为曲线的分隔线.考点:定义法求曲线方程、数形结合思想解答:〔1〕证明:因为,所以点被直线分隔.〔2〕解:直线与曲线没有公共点的充要条件是方程组无解,即.当时,对于直线,曲线上的点和满足,即点和被分隔.故实数的取值范围是.〔3〕证明:设的坐标为,那么曲线的方程为.对任意的,不是上述方程的解,即轴与曲线没有公共点.又曲线上的点和对于轴满足,即点和被轴分隔.所以轴为曲线的分隔线.难度:中等题23.〔此题总分值18分〕此题共有3个小题,第1小题总分值3分,第2小题总分值6分,第3小题总分值9分.数列满足,,.〔1〕假设,求的取值范围;〔2〕设是等比数列,且,求正整数的最小值,以及取最小值时相应的公比;〔3〕假设成等差数列,求数列的公差的取值范围.考点:等差数列、等比数列与不等式综合解答:〔1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考化学一轮复习专练14铁铜及其化合物含解析新人教版
- 2024高考化学一轮复习第一部分考点13化学与可持续发展强化训练含解析
- 2024高考化学一轮复习第四章非金属及其化合物第二讲富集在海水中的元素-氯规范演练含解析新人教版
- 2024高考历史一轮复习模块四选修部分第1讲历史上重大改革回眸学案含解析人民版
- 学校视频监控配置情况汇报
- 钢结构厂房工程施工要点
- 2024年湖北三峡职业技术学院高职单招语文历年参考题库含答案解析
- 平安福产说会修正版
- 八年级物理下册121杠杆课件新版新人教版
- 二零二五年度高校毕业生就业见习实习实训基地安全管理合同3篇
- 软件开发项目移交方案建议
- 2024年房屋租赁补充协议参考模板(四篇)
- 老年病护理学学习通超星期末考试答案章节答案2024年
- 《旅游职业礼仪》高职旅游专业全套教学课件
- 电梯维修安全培训课件
- 2024年时事政治考试134题(附答案)
- 2025高考数学专项复习:阿基米德三角形(解析版)
- 数据分析师历年考试真题试题库(含答案)
- 临床物理降温并发症局部冻伤预防与护理
- 养老院老年护理培训手册
- 高中化学-元素化合物价类二维图
评论
0/150
提交评论