版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市宣威市海岱镇第二中学2022-2023学年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“sinα=cosα”是“sin2α=1”的(
)A.充分不必要条件
B.必要不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:C2.(5分)(2015?万州区模拟)为了了解小学生近视情况,决定随机从同一个学校二年级到四年级的学生中抽取60名学生检测视力,其中二年级共有学生2400人,三年级共有学生2000人,四年级共有学生1600人,则应从三年级学生中抽取的学生人数为()A.24B.20C.16D.18参考答案:【考点】:分层抽样方法.【专题】:概率与统计.【分析】:根据分层抽样的定义直接进行计算即可.【解答】:∵二年级共有学生2400人,三年级共有学生2000人,四年级共有学生1600人,∴抽取60名学生,则从三年级学生中抽取的学生人数为,故选:B.【点评】:本题主要考查分层抽样的应用,利用条件确定抽取比例是解决本题的关键,比较基础.3.已知命题(
)
A.
B.
C.
D.参考答案:A略4.如图,矩形OABC内的阴影部分是由曲线,及直线x=a,与x轴围成,向矩形OABC内随机投掷一点,若落在阴影部分的概率为,则的值是()A、
B、
C、
D、参考答案:B略5.已知等比数列公比为,其前项和为,若、、成等差数列,则等于(
)A.
B.1
C.或1
D.参考答案:A6.已知向量与为单位向量,满足,则向量与的夹角为(A)45o (B)60o
(C)90o
(D)135o参考答案:D7.“x>1”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据不等式的关系结合充分条件和必要条件的定义进行判断即可.【解答】解:若x>1,则0<,则成立,即充分性成立,若当x<0时,成立,但x>1不成立,即必要性不成立,即“x>1”是“”成立的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质结合充分条件和必要条件的定义是解决本题的关键.8.已知在上是单调增函数,则的最大值是(
)A.0
B.1
C.2
D.3参考答案:D略9.运行右图所示框图的相应程序,若输入a,b的值分别为和,则输出M的值是(
)A.0
B.1
C.2
D.-1参考答案:C略10.已知是定义在R上的奇函数,且是以2为周期的周期函数,若当时,则的值为A
B
C
D参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直.上面命题中,真命题的序号
(写出所有真命题的序号).参考答案:(1)(2)12.数列的通项公式是,前项和为,则.参考答案:因为,所以。13.非空集合M关于运算满足:(1)对任意的a,,都有;(2)存在,使得对一切,都有,则称M关于运算为“理想集”.现给出下列集合与运算:①M={非负整数},为整数的加法;②M={偶数},为整数的乘法;③M={二次三项式},为多项式的加法;④M={平面向量},为平面向量的加法.其中M关于运算为“理想集”的是____________.(只填出相应的序号)参考答案:①④14.若正数满足,则的最小值为
.参考答案:315.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为________________.参考答案:-2略16.若函数的定义域为[-1,1],则满足f(2x-1)<f(1)的实数x的取值范围是______.参考答案:[0,1)【分析】先确定函数单调性,再根据单调性化简不等式,解得结果.【详解】∵在单调递增,∵,∴,解得,故答案为:[0,1)【点睛】本题考查利用导数研究函数单调性以及利用单调性解不等式,考查基本分析求解能力,属中档题.17.已知流程图如图所示,为使输出的值为16,则判断框内①处可以填数字
.(填入一个满足要求的数字即可)
参考答案:3略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知?x0∈R使得关于x的不等式|x﹣1|﹣|x﹣2|≥t成立.(Ⅰ)求满足条件的实数t集合T;(Ⅱ)若m>1,n>1,且对于?t∈T,不等式log3m?log3n≥t恒成立,试求m+n的最小值.参考答案:【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(Ⅰ)根据绝对值的几何意义求出t的范围即可;(Ⅱ)根据级别不等式的性质结合对数函数的性质求出m+n的最小值即可.【解答】解:(I)令f(x)=|x﹣1|﹣|x﹣2|≥|x﹣1﹣x+2|=1≥t,∴T=(﹣∞,1];(Ⅱ)由(I)知,对于?t∈T,不等式?≥t恒成立,只需?≥tmax,所以?≥1,又因为m>1,n>1,所以>0,>0,又1≤?≤=(=时取“=”),所以≥4,所以≥2,mn≥9,所以m+n≥2≥6,即m+n的最小值为6(此时m=n=3).19.(本小题满分13分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,PC=AB=2AD=2CD=2,E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)求二面角P-AC-E的余弦值;(Ⅲ)求直线PA与平面EAC所成角的正弦值.参考答案:(Ⅰ)见解析;(Ⅱ);(Ⅲ)【知识点】二面角的平面角及求法;平面与平面垂直的判定;直线与平面所成的角.B4解析:(Ⅰ)∵PC⊥平面ABCD,AC?平面ABCD,∴AC⊥PC.∵AB=4,AD=CD=2,∴AC=BC=.∴AC2+BC2=AB2,∴AC⊥BC.又BC∩PC=C,∴AC⊥平面PBC.∵AC?平面EAC,∴平面EAC⊥平面PBC.
…………4分(Ⅱ)由(Ⅰ)知AC⊥平面PBC,∴AC⊥CP,AC⊥CE,∴∠PCE即为二面角P-AC-E的平面角.
…………6分∵PC=AB=2AD=2CD=2,∴在△PCB中,可得PE=CE=,∴cos∠PCE==.
…………9分(Ⅲ)作PF⊥CE,F为垂足.由(Ⅰ)知平面EAC⊥平面PBC,∵平面平面EAC∩平面PBC=CE,∴PF⊥平面EAC,连接AF,则∠PAF就是直线PA与平面EAC所成角.
…………11分由(Ⅱ)知CE=,∴PF=,∴sin∠PAF==,即直线PA与平面EAC所成角的正弦值为.
…………13分【思路点拨】(Ⅰ)证明AC⊥PC.AC⊥BC.通过直线与平面垂直的判定定理以及平面与平面垂直的判定定理证明平面EAC⊥平面PBC.(Ⅱ)判断∠PCE为二面角P﹣AC﹣E的平面角,利用余弦定理即可求解.(Ⅲ)作PF⊥CE,F为垂足.连接AF,说明∠PAF就是直线PA与平面EAC所成角.然后解三角形即可求解直线PA与平面EAC所成角的正弦值.20.已知数列中,(1)求证:是等比数列,并求的通项公式;(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.参考答案:
略21.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.参考答案:(1)平均数为36,众数为33;(2)详见解析;(3)甲公司被抽取员工该月收入元,乙公司被抽取员工该月收入元.【分析】(1)直接利用茎叶图中数据求甲公司员工A投递快递件数的平均数和众数.(2)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.(3)利用(2)的结果能估算算两公司的每位员工在该月所得的劳务费.【详解】(1)甲公司员工A投递快递件数的平均数为:,众数为33.(2)设a为乙公司员工B投递件数,则当时,元,当时,元,X的可能取值为136,147,154,189,203,,,,,,X的分布列为:X136147154189203P(元).(3)根据图中数据,由(2)可估算:甲公司被抽取员工该月收入元,乙公司被抽取员工该月收入元.【点睛】本题主要考查离散型随机变量的分布列与期望,涉及到茎叶图、平均数等知识,考查学生的数学运算能力,是一道容易题.22.如图,四棱锥P-AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度老旧钢房拆除安全协议书
- 2025版个人土地租赁合同解除协议
- 2025年度个人信用借款合同绿色金融推进协议4篇
- 2025年度个人一手房买卖合同配套设施清单范本4篇
- 2025年度个人教育培训抵押借款协议
- 2025年全球及中国半导体设备用滤波器行业头部企业市场占有率及排名调研报告
- 2025-2030全球连供无线双面打印一体机行业调研及趋势分析报告
- 2025年全球及中国气调贮藏库用库门行业头部企业市场占有率及排名调研报告
- 2025年全球及中国产权制作软件行业头部企业市场占有率及排名调研报告
- 2025年度生物技术成果转化合同规范范本2篇
- (二模)遵义市2025届高三年级第二次适应性考试试卷 地理试卷(含答案)
- 二零二五隐名股东合作协议书及公司股权代持及回购协议
- 四川省成都市武侯区2023-2024学年九年级上学期期末考试化学试题
- 2025年计算机二级WPS考试题目
- 教育部《中小学校园食品安全和膳食经费管理工作指引》知识培训
- 初一到初三英语单词表2182个带音标打印版
- 2024年秋季人教版七年级上册生物全册教学课件(2024年秋季新版教材)
- 年度重点工作计划
- 《经济思想史》全套教学课件
- 环境卫生学及消毒灭菌效果监测
- 对合同条款有异议函
评论
0/150
提交评论