版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市富民县永定中学2021-2022学年高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是A.
B.
C.
D.参考答案:D2.已知等比数列,
分别表示其前项积,且,则(
)A.
B.
C.
D.参考答案:C略3.将一枚硬币连续抛掷n次,若使得至少有一次正面向上的概率不小于,则n的最小值为()A.4 B.5 C.6 D.7参考答案:A【考点】n次独立重复试验中恰好发生k次的概率.【分析】由题意,1﹣≥,即可求出n的最小值.【解答】解:由题意,1﹣≥,∴n≥4,∴n的最小值为4,故选A.【点评】本题考查概率的计算,考查对立事件概率公式的运用,比较基础.4.下列命题错误的是(
)A.命题“若x2<1,则﹣1<x<1”的逆否命题是若x≥1或x≤﹣1,则x2≥1B.“am2<bm2”是”a<b”的充分不必要条件C.命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0D.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题参考答案:D【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】对于A,写出逆否命题,比照后可判断真假;对于B,利用必要不充分条件的定义判断即可;对于C,写出原命题的否定形式,判断即可.对于D,根据复合命题真值表判断即可;【解答】解:命题“若x2<1,则﹣1<x<1”的逆否命题是若x≥1或x≤﹣1,则x2≥1,故A正确;“am2<bm2”?”a<b”为真,但”a<b”?“am2<bm2”为假(当m=0时不成立),故“am2<bm2”是”a<b”的充分不必要条件,故B正确;命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0,故C正确;命题“p或q”为真命题,则命题“p”和命题“q”中至少有一个是真命题,故D错误,故选:D【点评】本题借助考查命题的真假判断,考查充分条件、必要条件的判定及复合命题的真假判定.5.“x>2”是“”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:D试题分析:由题根据函数的单调性结合函数图像进行分析可得选项;如图根据图像可得正确选项为D考点:函数模型的应用6.已知数列的前项的和(是不为0的实数),那么
(
)
A.一定是等差数列
B.一定是等比数列
C.或者是等差数列,或者是等比数列
D.既不可能是等差数列,也不可能是等比数列参考答案:C7.设集合,,则
A.
B.
C.
D.参考答案:A先解两个一元二次方程,再取交集,选A,5分到手,妙!8.如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为(
)A.
B.
C.
D.参考答案:B略9.设集合A={x|﹣x2+2x+3>0},B={x|<()x<1},则A∩B=()A.(0,3) B.(0,2) C.(1,3) D.(1,+∞)参考答案:B【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)<0,解得:﹣1<x<3,即A=(﹣1,3),由B中不等式变形得:=()2<()x<1=()0,解得:0<x<2,即B=(0,2),则A∩B=(0,2),故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.10.已知为不重合的两个平面,直线那么“”是“”的(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设,其中.若对一切恒成立,则以下结论正确的是___________(写出所有正确结论的编号).①;
②;
③既不是奇函数也不是偶函数;④的单调递增区间是;⑤
经过点的所有直线均与函数的图象相交.参考答案:①
③
⑤为参数。因为,所以是三角函数的对称轴,且周期为,所以,所,所以.①,所以正确。②,,因为,所以,所以,所以②错误。③函数既不是奇函数也不是偶函数,所以③正确。因为,所以单调性需要分类讨论,所以④不正确。假设使经过点(a,b)的直线与函数的图象不相交,则此直线须与横轴平行,且,即,所以矛盾,故不存在经过点(a,b)的直线于函数的图象不相交故⑤正确。所以正确的是①
③
⑤。12.若无穷数列(R)是等差数列,则其前10项的和为
.参考答案:10若等差数列公差为d,则,若d>0,则当时,,若d<0,则当时,,∴d=0,可得,解得或(舍去),∴其前10项的和为10.13.C.如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
.
参考答案:6
14.不等式组所表示的平面区域面积为
.参考答案:略15.展开式中的系数为-_______________。参考答案:【解】:∵展开式中项为
∴所求系数为
故填【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;【突破】:利用组合思想写出项,从而求出系数;16.若关于x的不等式的解集恰好是,则
.参考答案:4【详解】试题分析:设,对称轴为,此时,有题意可得;,且,由,解得:(舍去)或,可得,由抛物线的对称轴为得到,所以考点:二次函数的性质二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.17.已知符号函数sgn(x)=,则函数f(x)=sgn(lnx)﹣|lnx|的零点个数为
.参考答案:2考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:化简f(x)=sgn(lnx)﹣|lnx|=,从而求出函数的零点即可.解答: 解:由题意,f(x)=sgn(lnx)﹣|lnx|=,显然x=1是函数f(x)的零点,当x>1时,令1﹣lnx=0得,x=e;则x=e是函数f(x)的零点;当0<x<1时,﹣1+lnx<0,故没有零点;故函数f(x)=sgn(lnx)﹣|lnx|的零点个数为2;故答案为:2.点评:本题考查了分段函数的应用及函数的零点与方程的根的关系应用,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,且.(1)求的取值范围;(2)求证:.参考答案:(1);(2)证明见解析【分析】(1)由条件等式将用表示,再从,进一步求出的范围,将问题转化为求二次函数的取值范围,二次函数配方,即可求解;(2)根据已知条件转化证明,利用基本不等式即可得证.【详解】(1)依题意,,故.所以,所以,即的取值范围为.(2)因为,所以,当且仅当时,等号成立,又因为,所以.【点睛】本题主要考查配方法、基本不等式和不等式证明等基础知识,解题中注意应用条件等式,属于中档题.19.
已知函数.
(1)若,求曲线在处切线的斜率;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.参考答案:(Ⅰ)由已知,.故曲线在处切线的斜率为.(Ⅱ).
①当时,由于,故,所以,的单调递增区间为.②当时,由,得.在区间上,,在区间上,所以,函数的单调递增区间为,单调递减区间为.(Ⅲ)由已知,转化为.
由(Ⅱ)知,当时,在上单调递增,值域为,故不符合题意.(或者举出反例:存在,故不符合题意.)当时,在上单调递增,在上单调递减,故的极大值即为最大值,,所以,解得.20.(本小题共l2分)已知函数,函数是函数的导函数.(1)若,求的单调减区间;(2)若对任意且,都有,求实数的取值范围;(3)在第(2)问求出的实数的范围内,若存在一个与有关的负数M,使得对任意x∈[M,0]时|f(x)|≤4恒成立,求M的最小值及相应的值.【知识点】导数的应用
B12参考答案:(1);(2);(3)-3.解析:(1)当时,
(1分)
由解得
…(2分)
∴当时函数的单调减区间为
;
…(3分)
(2)易知
依题意知
=
=
…(5分)
因为,所以,即实数的取值范围是;
…(6分)
(3)易知显然,由(2)知抛物线的对称轴
…(7分)
①当即时,且,解得
…(8分)
此时M取较大的根,即
…(9分)
∵,∴
…(10分)
②当即时,且
令解得
…(11分)
此时M取较小的根,即
==…
(12分)
∵,∴==≥-3当且仅当时取等号
(13分)
由于,所以当时,取得最小值-3
…(14分)【思路点拨】(1)求导数,利用导数小于0,可得函数的单调减区间.(2)先根据用函数的表达式表示出来,再进行化简得由此式即可求得实数的取值范围;(3)本小题可以从的范围入手,考虑与两种情况,结合二次的象与性质,综合运用分类讨论思想与数形结合思想求解.19.(本小题12分)为响应低碳绿色出行,某市推出‘’新能源分时租赁汽车‘’,其中一款新能源分时租赁汽车,每次租车收费得标准由以下两部分组成:(1)根据行驶里程数按1元/公里计费;(2)当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费;(3)租车时间不足1分钟,按1分钟计算.已知张先生从家里到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间t∈[20,60](单位:分钟).由于堵车,红绿灯等因素,每次路上租车时间t是一个随即变量.现统计了他50次路上租车时间,整理后得到下表:租车时间t(分钟)[20,30](30,40](40,50](50,60]频数2182010
将上述租车时间的频率视为概率.(1)写出张先生一次租车费用y(元)与租车时间t(分钟)的函数关系式;(2)公司规定,员工上下班可以免费乘坐公司接送车,若不乘坐公司接送车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司接送车,还是租用该款新能源汽车?参考答案:22.各项为正的数列{an}满足,,(1)取λ=an+1,求证:数列是等比数列,并求其公比;(2)取λ=2时令,记数列{bn}的前n项和为Sn,数列{bn}的前n项之积为Tn,求证:对任意正整数n,2n+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同章使用管理制度
- 2024年抗心力衰竭药项目投资申请报告代可行性研究报告
- 2024年度乙方向甲方提供云计算服务的合同2篇
- 二手车交易安全保障服务合同(2024版)2篇
- 2024版项目合作协议5篇
- 天花的临床护理
- 2024年大中型直流电机项目资金需求报告代可行性研究报告
- 衣原体感染的临床护理
- 房屋建筑给排水工程设计合同(2024版)2篇
- 2024年度影视制作合同:影视公司与投资方之间的电影制作2篇
- 关于发布工程建设监理费上海收费指导
- 《义务教育法》学习教案(共3页)
- 纪检监察干部调研报告
- 安全工程—英语双专业(双学位)培养计划(精)
- 财神正朝科仪
- 体格检查基本规范
- 生活中的比-小组学习任务单
- 毕业论文打印机皮带驱动系统能控能观和稳定性分析
- 车辆工程毕业设计论文HQ5160QZ臂架式清障车改装设计全套图纸
- 商业混凝土公司商品砼公司质量手册及程序文件
- 立定跳远教案 (2)
评论
0/150
提交评论