云南省大理市喜洲中学2021年高二数学理模拟试题含解析_第1页
云南省大理市喜洲中学2021年高二数学理模拟试题含解析_第2页
云南省大理市喜洲中学2021年高二数学理模拟试题含解析_第3页
云南省大理市喜洲中学2021年高二数学理模拟试题含解析_第4页
云南省大理市喜洲中学2021年高二数学理模拟试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大理市喜洲中学2021年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.从标有1、2、3、4、5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为(

)A.

B.

C.

D.参考答案:B由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B,则,,所以.

2.已知是两个命题,若“”是假命题,则A.都是假命题

B.都是真命题C.是假命题是真命题

D.是真命题是假命题参考答案:D3.如图直三棱柱ABC﹣A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B﹣APQC的体积为()A. B. C. D.参考答案:B【考点】组合几何体的面积、体积问题.【分析】把问题给理想化,认为三棱柱是正三棱柱,设底面边长a和侧棱长h均为1,P、Q分别为侧棱AA′,CC′上的中点求出底面面积高,即可求出四棱锥B﹣APQC的体积.【解答】解:不妨设三棱柱是正三棱柱,设底面边长a和侧棱长h均为1

则V=SABC?h=?1?1??1=

认为P、Q分别为侧棱AA′,CC′上的中点

则VB﹣APQC=SAPQC?=

(其中表示的是三角形ABC边AC上的高)

所以VB﹣APQC=V故选B4.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小参考答案:B【考点】椭圆的简单性质.【分析】连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.【解答】解:连接BD,AC设AD=t,则BD==∴双曲线中a=e1=∵y=cosθ在(0,)上单调减,进而可知当θ增大时,y==减小,即e1减小∵AC=BD∴椭圆中CD=2t(1﹣cosθ)=2c∴c'=t(1﹣cosθ)AC+AD=+t,∴a'=(+t)e2==∴e1e2=×=1故选B.5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足=λ1+λ2(O为原点),其中λ1,λ2∈R,且λ1+λ2=1,则点C的轨迹是()A.直线B.椭圆

C.圆

D.双曲线参考答案:A略6.已知双曲线﹣=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x参考答案:B【分析】根据题意,由双曲线的方程可以确定其焦点在位置,由直线的方程可得直线与x轴交点的坐标,即可得双曲线焦点的坐标,由双曲线的几何性质可得9+m=25,解可得m的值,即可得双曲线的标准方程,进而由双曲线的渐近线方程计算可得答案.【解答】解:根据题意,双曲线的方程为﹣=1,则其焦点在x轴上,直线x+y=5与x轴交点的坐标为(5,0),则双曲线的焦点坐标为(5,0),则有9+m=25,解可得,m=16,则双曲线的方程为:﹣=1,其渐近线方程为:y=±x,故选:B.7.函数f(x)=x3﹣x2﹣x(0<x<2)极小值是()A.0 B.﹣1 C.2 D.1参考答案:B【考点】6D:利用导数研究函数的极值.【分析】求出函数的导数,解关于导函数的不等,求出函数的单调区间,从而求出函数的极小值即可.【解答】解:f′(x)=3x2﹣2x﹣1=(3x+1)(x﹣1),(0<x<2),令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,故f(x)在(0,1)递减,在(1,2)递增,故f(x)极小值=f(1)=﹣1,故选:B.8.在△ABC中,若a=18,b=24,A=44°,则此三角形解的情况为 A.无解

B.两解

C.一解

D.一解或两解参考答案:B略9.对于实数a,b,c,下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,,则参考答案:D试题分析:对于A.若,若则故A错;对于B.若,取则是假命题;C.若,取,则是错误的,D.若,则取,又,所以,又因为同号,则考点:不等式的性质的应用10.命题“对于任意实数x,,都有2x+4≥1”的否定是(

)

A.存在实数x,使2x+4<1

B.对任意实数x,都有2x+4≤1

C.存在实数x,使2x+4≤1

D.对任意实数x,都有2x+4<1参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知,若恒成立,则实数的取值范是

.参考答案:12.若直线的斜率,则此直线的倾斜角的取值范围为

;参考答案:略13.若函数满足,则当h趋向于0时,趋向于________.参考答案:-12【分析】由当趋向于时,,再根据的定义和极限的运算,即可求解.【详解】当趋向于时,,因为,则,所以.【点睛】本题主要考查了导数概念,以及极限的运算,其中解答中合理利用导数的概念与运算,以及极限的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.14.直线与圆相交的弦长为________.参考答案:

15.若向量,,则等于

.参考答案:516.已知关于的不等式在R上恒成立,则实数的取值范围是

参考答案:

17.以下4个命题:1)三个点可以确定一个平面;2)平行于同一个平面的两条直线平行;3)抛物线y2=﹣4x对称轴为y轴;4)同时垂直于一条直线的两条直线一定平行;正确的命题个数为

.参考答案:0【考点】抛物线的简单性质;命题的真假判断与应用.【分析】1)由平面的性质可得:三个不共线的点可以确定一个平面.2)由空间中的两条直线的位置关系可得:这两条直线可能平行、可能异面、可能相交.3)由抛物线的性质可得:抛物线y2=﹣4x对称轴为x轴.4)空间中的两条直线的位置关系可得:这两条直线可能平行、可能异面、可能相交.【解答】解:1)由平面的性质可得:三个不共线的点可以确定一个平面,所以1)错误.2)由空间中的两条直线的位置关系可得:平行于同一个平面的两条直线可能平行、可能异面、可能相交,所以2)错误.3)由抛物线的性质可得:抛物线y2=﹣4x对称轴为x轴,所以3)错误.4)空间中的两条直线的位置关系可得:在空间中同时垂直于一条直线的两条直线可能平行、可能异面、可能相交,所以4)错误.故答案为:0.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C1:的长轴、短轴、焦距分别为A1A2、B1B2、F1F2,且是与等差中项(Ⅰ)求椭圆C1的方程;(Ⅱ)若曲线C2的方程为,过椭圆C1左顶点的直线与曲线C2相切,求直线被椭圆C1截得的线段长的最小值

参考答案:解:(I)由题意得,,()所以,解得故椭圆的方程为.………5分(II)由(I)得椭圆的左顶点坐标为,设直线的方程为由直线与曲线相切得,整理得又因为即解得联立消去整理得直线被椭圆截得的线段一端点为,设另一端点为,解方程可得点的坐标为所以令,则考查函数的性质知在区间上是增函数,所以时,取最大值,从而.…………………10分略19.(本小题满分15分)如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围。参考答案:解:(1)由题设点,又也在直线上,,由题,过A点切线方程可设为,即,则,解得:,∴所求切线为或(2)设点,,,,,,即,又点在圆上,,两式相减得,由题以上两式有公共点,整理得:,即,令,则,解得:,,解得:.20.数列{an}满足a1=1,nan+1=(n+1)an+(n+1)n(n∈N+),(1)令cn=,证明{cn}是等差数列,并求an;(2)令bn=,求数列{bn}前n项和Sn.参考答案:【考点】数列的求和;等差关系的确定.【分析】(1)把已知数列递推式两边同时除以n(n+1),可得数列{}是以1为首项,以1为公差的等差数列,求其通项公式后可得an;(2)把(1)中求得的数列通项公式代入bn=,整理后利用裂项相消法求数列{bn}前n项和Sn.【解答】(1)证明:由nan+1=(n+1)an+(n+1)n,得,又∵,∴数列{}是以1为首项,以1为公差的等差数列,则,∴;(2)解:∵bn==,∴=.21.已知数列为等差数列,公差,其中恰为等比数列,若,,,⑴求等比数列的公比⑵试求数列的前n项和

参考答案:依题意得:⑴即解得

或(舍去)…………………4’公比……………6’⑵…………①

…②由①②得,………10’…………14’

22.(1)求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.(2)求焦点在y轴上,焦距是4,且经过点M(3,2)的椭圆的标准方程.参考答案:【考点】椭圆的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】(1)由椭圆方程为,可得a,b,c,即可得出;(2)利用椭圆的定义可得:a,即可得出b2=a2﹣c2.【解答】解:(1)∵椭圆方程为,∴a=2,b=1,c==,因此,椭圆的长轴的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论