




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邢台市固献中学2022年度高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=e|lnx|﹣|x﹣|,则函数y=f(x)的大致图象为(
) A. B. C. D.参考答案:C考点:函数的图象.专题:函数的性质及应用.分析:利用排除法,根据定义域排除A,B,根据f(1)=1排除D,问题得以解决解答: 解:∵f(x)=e|lnx|﹣|x﹣|,∴函数的定义域为(0,+∞),故排除A,B,当x=1时,f(1)=1﹣0=1,故排除D故选:C点评:本题考查了函数图象的识别,排除法时做选择题的一种常用方法,属于基础题2.已知中心在原点的双曲线渐近线方程为,左焦点为(-10,0),则双曲线的方程为()A. B. C. D.参考答案:B【分析】根据题意,分析双曲线的焦点在x轴上,又可知c=10,渐近线方程为,所以可得=,进而可求得a、b的值,从而求出结果.【详解】解:根据题意,要求双曲线的焦点为(﹣10,0),则其焦点在x轴上,且c=10,设双曲线的方程为﹣=1,则有a2+b2=c2=100,又由双曲线渐近线方程为y=±x,则有=,解可得:a=6,b=8,则要求双曲线的方程为:﹣=1;故选:B.
3.已知数列满足,,,若数列满足,则(
)A.
B.
C.
D.参考答案:D4.下列四个命题中
①设有一个回归方程y=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“"的否定;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(-l<X<0); ④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系. 其中正确的命题的个数有 A.1个
B.2个 C.3个
D.4个 附:本题可以参考独立性检验临界值表参考答案:C略5.若f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(﹣3)=(
)A.2 B.3 C.6 D.9参考答案:C【考点】抽象函数及其应用;函数的值.【专题】函数的性质及应用.【分析】根据抽象函数的关系进行代入求解即可.【解答】解:由题意可知:f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴f(0)=0.f(0)=f(﹣1+1)=f(﹣1)+f(1)+2×(﹣1)×1=f(﹣1)+f(1)﹣2,∴f(﹣1)=0.f(﹣1)=f(﹣2+1)=f(﹣2)+f(1)+2×(﹣2)×1=f(﹣2)+f(1)﹣4,∴f(﹣2)=2.f(﹣2)=f(﹣3+1)=f(﹣3)+f(1)+2×(﹣3)×1=f(﹣3)+f(1)﹣6,∴f(﹣3)=6.故选:C【点评】本题是抽象函数及其应用类问题.在解答的过程当中充分体现了抽象性、特值的思想以及问题转化的能力.6.如图是一个四面体的三视图,这个三视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为()A. B. C. D.2参考答案:A【考点】L!:由三视图求面积、体积.【分析】由四面体的三视图得该四面体为棱长为2的正方体ABCD﹣A1B1C1D1中的三棱锥C1﹣BDE,其中E是CD中点,由此能求出该四面体的体积.【解答】解:由四面体的三视图得该四面体为棱长为2的正方体ABCD﹣A1B1C1D1中的三棱锥C1﹣BDE,其中E是CD中点,△BDE面积,三棱锥C1﹣BDE的高h=CC1=2,∴该四面体的体积:V==.故选:A.7.下列函数中,在区间上为增函数且以π为周期的函数是()A. B.y=sinx C.y=﹣tanx D.y=﹣cos2x参考答案:D【考点】三角函数的周期性及其求法;余弦函数的单调性.【分析】求出选项中的每个函数在区间上为增函数且以π为周期的函数即可.【解答】解:在区间上为增函数且以4π为周期的函数,不合题意;y=sinx在区间上为增函数且以2π为周期的函数,不合题意;y=﹣tanx不满足在区间上为增函数且以π为周期的函数.y=﹣cos2x在区间上为增函数且以π为周期的函数,满足题意,正确.故选D.8.若复数满足(为虚数单位),则的共轭复数为
A.
B.
C.
D.参考答案:B9.若,
(
)A.
B.
C. D.
参考答案:A10.设复数满足,则(
)A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.等比数列{an}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=.参考答案:30【考点】等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{an}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.12.如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形OCD,弓形CMD,扇形AOC和扇形BOD(其中).某次菊花展分别在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:50元/米2,30元/米2,40元/米2.为使预计日总效益最大,的余弦值应等于
.参考答案:设日总效益设为,则,又由,可得,解得,由,函数递增,,函数递减,既有,即由时,预计日收益最大,所以的余弦值为.
13.已知f(x)=x3+3ax2+bx+a2在x=﹣1时有极值0,则a﹣b的值为
.参考答案:﹣7考点:函数在某点取得极值的条件.专题:计算题;导数的概念及应用.分析:求导函数,利用函数f(x)=x3+ax2+bx+a2在x=﹣1处有极值0,建立方程组,求得a,b的值,再验证,即可得到结论.解答: 解:∵函数f(x)=x3+3ax2+bx+a2∴f'(x)=3x2+6ax+b,又∵函数f(x)=x3+ax2+bx+a2在x=﹣1处有极值0,∴,∴或当时,f'(x)=3x2+6ax+b=3(x+1)2=0,方程有两个相等的实数根,不满足题意;当时,f'(x)=3x2+6ax+b=3(x+1)(x+3)=0,方程有两个不等的实数根,满足题意;∴a﹣b=﹣7故答案为:﹣7.点评:本题考查导数知识的运用,考查函数的极值,考查学生的计算能力,属于基础题.14.已知定义在R上的函数的图象关于点对称,且满足,又,,则
参考答案:1略15.在△ABC中,角A,B,C的对边分别a,b,c,若.则直线被圆所截得的弦长为
.
参考答案:略16.方程的曲线即为函数的图像,对于函数,有如下结论:①在R上单调递减;②函数不存在零点;③函数的值域是R;④若函数和的图像关于原点对称,则函数的图像就是方程确定的曲线.其中所有正确的命题序号是
.参考答案:【知识点】函数的图像与性质
B9D根据题意画出方程的曲线即为函数的图象,如图所示.轨迹是两段双曲线的一部分加上一段的椭圆圆弧组成的图形
从图形中可以看出,关于函数的有下列说法:
①在R上单调递减;正确.
②由于即,从而图形上看,函数的图象与直线没有交点,故函数不存在零点;正确.③函数的值域是R;正确.③函数的值域是R;正确.
④根据曲线关于原点对称的曲线方程的公式,可得若函数和的图象关于原点对称,则用分别代替,可得就是表达式,可得,则的图象对应的方程是,说明④错误
其中正确的个数是3.【思路点拨】根据题意画出方程的曲线即为函数的图象,如图所示.轨迹是两段双曲线的一部分加上一段的椭圆圆弧组成的图形.从图形中可以看出,关于函数的结论的正确性.17.已知以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角的范围是,则双曲线离心率的范围是
▲
.
参考答案:<e<三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=cos2x,g(x)=sinxcosx.(1)若直线x=a是函数y=f(x)的图象的一条对称轴,求g(2a)的值;(2)若0≤x≤,求h(x)=f(x)+g(x)的值域.参考答案:【考点】三角函数的最值.【分析】(1)利用二倍角公式化简函数的表达式,通过直线x=a是函数y=f(x)的图象的一条对称轴,求出a,然后求g(2a)的值;(2)化简h(x)=f(x)+g(x)为正弦函数类型,利用角的范围求出相位的范围,然后去函数值域.【解答】解:(1),其对称轴为,因为直线线x=a是函数y=f(x)的图象的一条对称轴,所以,又因为,所以即.(2)由(1)得=∵,∴,∴.所以h(x)的值域为.19.已知向量=(cos,sin),=(cos,―sin),且x∈[0,].(1)已知∥,求x;(2)若f(x)=―2l|+|+2l的最小值等于―3,求l的值.参考答案:略20.本题满分12分)等比数列的各项均为正数,且(1)求数列的通项公式.(2)设求数列的前项和.参考答案:解:(1)设数列{an}的公比为q,由得所以。有条件可知,故。……4分由得,所以…5分
故数列{an}的通项式为
……………6分(2)==.……………………8分故
…………10分所以数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 被遗弃人员-安置方案(3篇)
- 社区-街道设计方案(3篇)
- 未来免疫治疗在自身免疫性胃炎中的治疗突破分析报告
- 建筑行业安全管理信息化技术应用与创新报告
- 土石农田改造方案(3篇)
- 金融租赁公司业务模式创新与风险管理创新策略研究报告
- 风湿肺间质性肺炎
- 泵的课件教学课件
- 医疗行业人才培养与流动机制创新与实践研究报告
- 花园平台改建方案(3篇)
- 呼吸内科质控体系构建与实施
- 甲肝健康知识课件
- 2025至2030中国防辐射服行业发展趋势分析与未来投资战略咨询研究报告
- 社区干部考试试题及答案
- 年产2000吨电子级超高纯石英晶体材料制造项目报告表
- 2025年中小学暑假安全教育主题家长会 课件
- 2025-2030年中国芳烃行业市场深度调研及投资前景与投资策略研究报告
- 2025年广西专业技术人员继续教育公需科目(一)答案
- DB33-T 1431-2025 公路固化土路基施工规范-
- 中国电力金具行业市场发展前景及趋势预测与投资分析研究报告(2025-2030版)
- GB 45320-2025建筑防水卷材安全和通用技术规范
评论
0/150
提交评论