版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市平鲁区第三中学2022高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,且函数在处有极值,则的最大值等于
A.2
B.3
C.4
D.5参考答案:C略2.函数的部分图像如图所示,则A.B.C.D.参考答案:A试题分析:由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图像与性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.3.当n=1,2,3,4,5,6时,比较2n和n2的大小并猜想()A.n≥1时,2n>n2 B.n≥3时,2n>n2 C.n≥4时,2n>n2 D.n≥5时,2n>n2参考答案:D【考点】归纳推理.【分析】此题应从特例入手,当n=1,2,3,4,5,6,…时探求2n与n2的大小关系,也可以从y=2x与y=x2的图象(x>0)的变化趋势猜测2n与n2的大小关系.【解答】解:当n=1时,21>12,即2n>n2;当n=2时,22=22,即2n=n2;当n=3时,23<32,即2n<n2;当n=4时,24=42,即2n=n2;当n=5时,25>52,即2n>n2;当n=6时,26>62;…猜测当n≥5时,2n>n2;下面我们用数学归纳法证明猜测成立,(1)当n=5时,由以上可知猜测成立,(2)设n=k(k≥5)时,命题成立,即2k>k2,当n=k+1时,2k+1=2?2k>2k2=k2+k2>k2+(2k+1)=(k+1)2,即n=k+1时,命题成立,由(1)和(2)可得n≥5时,2n与n2的大小关系为:2n>n2;故答案为:n=2或4时,2n=n2;n=3时,2n<n2;n=1及n取大于4的正整数时,都有2n>n2.故选D.4.已知点是圆内一点,直线是以为中点的弦所在的直线,直线的方程为,那么(
)A.且与圆相切B.且与圆相离C.且与圆相切D.且与圆相离参考答案:B5.在和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为(
)
A.8
B.±8
C.16
D.±16参考答案:A6.一个年级有12个班,每班同学以1~50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是()
A.分层抽样
B.抽签法
C.随机数表法
D.系统抽样法参考答案:D略7.下面用“三段论”形式写出的演绎推理:因为指数函数在(0,+∞)上是增函数,是指数函数,所以在(0,+∞)上是增函数,该结论显然是错误的,其原因是(
)A.大前提错误
B.小前提错误
C.推理形式错误
D.以上都可能参考答案:A根据题意,该演绎推理的大前提是:指数函数在上是增函数,小前提是是指数函数,结论是在上是增函数.其中大前提是错误的,因为时,函数在上是减函数,致使得出的结论错误,故选A.
8. 已知i为虚数单位,则复数=(
)A.
B.
C.
D.参考答案:B9.如果方程表示双曲线,那么实数的取值范围是(
).A.B.或
C.D.或参考答案:D10.设,则“”是“”的(
)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:B分析】分别求出两不等式的解集,根据两解集的包含关系确定.详解】化简不等式,可知推不出;由能推出,故“”是“”的必要不充分条件,故选B。【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件。二、填空题:本大题共7小题,每小题4分,共28分11.下列各数
、
、
、中最小的数是____________。参考答案:
解析:
、
、
、12.若双曲线的一条渐近线的倾斜角为,则
的最小值是___________.[参考答案:略13.已知m为函数f(x)=x3﹣12x的极大值点,则m=
.参考答案:﹣2【考点】6D:利用导数研究函数的极值.【分析】求出导函数,求出极值点,判断函数的单调性,求解极大值点即可.【解答】解:函数f(x)=x3﹣12x,可得f'(x)=3x2﹣12,令3x2﹣12=0,x=2或﹣2,x∈(﹣∞,﹣2),f'(x)>0,x∈(﹣2,2)f'(x)<0,x∈(2,+∞),f'(x)>0,x=﹣2函数取得极大值,所以m=﹣2.故答案为:﹣2.14.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=.参考答案:0.954【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从正态分布N(0,σ2),得到正态曲线关于x=0对称,根据P(ξ>2)=0.023,得到对称区间上的概率,从而可求P(﹣2≤ξ≤2).【解答】解:∵随机变量ξ服从正态分布N(0,σ2),∴正态曲线关于x=0对称,∵P(ξ>2)=0.023,∴P(ξ<﹣2)=0.023∴P(﹣2≤ξ≤2)=1﹣0.023﹣0.023=0.954,故答案为:0.95415.设集合M=, ,若,则实数的取值范围是
.参考答案:16.在抛物线上,横坐标为的点到焦点的距离是,则的值是
;参考答案:2略17.等轴双曲线的一个焦点是,则它的标准方程是
。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知双曲线经过点M().(1)如果此双曲线的渐近线为,求双曲线的标准方程;(2)如果此双曲线的离心率e=2,求双曲线的标准方程.参考答案:【考点】双曲线的标准方程.【分析】(1)由双曲线的渐近线方程设出双曲线的方程是,把已知点代入双曲线的方程可得k值,则双曲线的标准方程可求;(2)由双曲线的离心率e=2,得到a与b的关系,分类设出双曲线方程,代入点的坐标求解.【解答】解:(1)∵双曲线的近线为y=x,∴设双曲线方程为,∵点M()在双曲线上,∴,得k=3.∴双曲线的标准方程为;(2)∵,又∵c2=a2+b2,∴.①当双曲线的焦点在x轴上时,设双曲线标准方程为,∵点M()在双曲线上,∴,解得a2=4,b2=12,则所求双曲线标准方程为.②当双曲线的焦点在y轴上时,设双曲线标准方程为,∵点M()在双曲线上,∴,解得a2=4,b2=12,则所求双曲线标准方程为.故所求双曲线方程为或.19.已知圆,直线.(I)求圆的圆心及半径;(Ⅱ)求直线被圆截得的弦的长度.参考答案:(1)圆:整理得,圆心,半径为.
圆心到直线:的距离==弦的长度==20.已知函数(,且).(1)若曲线在处的切线和直线平行,且方程有两个不等的实根,求m的取值范围;(2)若,不等式恒成立,求a的取值范围.参考答案:(1);(2).【分析】(1)根据曲线在处的切线和直线平行,利用导数的几何意义求得,再将方程有两个不等的实根,转化为函数的图象和直线有两个不同的交点求解.
(2)由,即对恒成立,令,只要其最小值大于等于零求解即可.【详解】(1)因为,由,解得,所以,,函数在上单调递增,在上单调递减,,又因为当时,,方程有两个不等的实根,即函数的图象和直线有两个不同的交点,故.(2)由,即对恒成立,令,则,令,得.当时,;当时,,所以的最小值为,令,则,令,得.当时,,在上单调递增;当时,,在上单调递减.所以当时,的最小值为,所以,当时,的最小值为,所以,综上:故的取值范围是.【点睛】本题主要考查导数在函数的零点和不等式恒成立中的应用,还考查了转化化归的思想和运算求解的能力,属于难题.21.(本小题满分13分).某市电力部门在抗雪救灾的某项重建工程中,需要在A、B两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离.现测量人员在相距km的C、D两地(假设A、B、C、D在同一平面上),测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A、B距离的倍,问施工单位至少应该准备多长的电线?参考答案:22.(本小题满分9分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求抽取的4名工人中恰有2名男工人的概率.
参考答案:解:(1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度品牌授权合同:拂晓冥想商标使用许可3篇
- 2024年度企业IT培训与咨询服务合同3篇
- 《导数与定积分总结》课件
- 复旦大学(张奇):2023年大语言模型评测报告
- 2024年度技术服务合同技术指标与服务流程详解
- 2024年度企业与网络安全公司网络安全服务合同
- 2024年度技术研发合作合同(人工智能领域)
- 2024中国烟草总公司内蒙古自治区公司招聘调剂信息易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国平安人寿保险股份限公司嘉兴中心支公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度祁菊离婚财产分配及赡养费协议
- 《秸秆还田》ppt课件
- 食品加工企业安全设计设施专篇
- 颈动脉斑块科普知识PPT参考幻灯片
- 封头容积、质量、内表面积和总高度计算
- 反射隔热涂料施工方案(完整版)
- 海南省建设工程施工阶段监理服务费计费规则
- [精编]《工伤保险》之铁路企业职工工伤保险试行办法
- 创建五星级班组PPT课件
- TBJWA001-2021健康直饮水水质标准
- 监理日报模板
- 社区卫生服务中心创建汇报材料
评论
0/150
提交评论