开关电源设计79653课件_第1页
开关电源设计79653课件_第2页
开关电源设计79653课件_第3页
开关电源设计79653课件_第4页
开关电源设计79653课件_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12V/30W开关电源设计)

))时间:二零一零年十二月摘要该电源特性是:简单,直接可与220V交流电源连接,经桥式整流电容滤波后产生300V直流高电压起动开关电源工作。并且重量轻、体积小,接线简单外围元件少。30W小功率开关电源原理图如图2所示。

12V/30W小功率开关电源原理图

总体设计方案该电路特点是利用三极管Q1,二极管D1及电阻R5、R6组成过低压保护电路,当输入电压降低到一定程度时,Q1导通,控制端C电位降低,TOP开关关闭,开关电源没有输出。(1)输入电路电网交流220V输入电压经两级EMI滤波电路

、桥式整流、电容滤波后产生300V直流高压起动开关电源工作。(2)电源变换器部分在该电路中,T2为高频变压器,其中N1为初级绕组(35T)N2为反馈绕组(15T)N3为次级隔离输出绕组(7T)总体设计方案开关电源工作后,反馈绕组N2经整流、滤波、限流后送至TOP开关控制极C,以调整TOP开关内部PWM占空比。当因某种原因如负载变轻引起输出电压升高时,N2电压将升高,即流入TOP开关控制端C的电流增加。在振荡电路的控制下,漏极端D有电流流入芯片,提供开环输入,该输入通过旁路调整器、误差放大器,由控制端进行闭环调整,经由PWM控制MOSFET的输出占空比,使其占空比线性减小,从而使输出电压下降,最后达到动态平衡,保持输出稳定。电路中并接于初级绕组N1两端的瞬态电压抑制二极管D5、电容C4及快速二极管D6组成钳位削峰电路。钳制电感放电脉冲的最高电位,减少漏感抗引起的漏极端电压畸变。在实际绕制高频电源变压器时,为了减小漏感的影响,可采用初级与次级相互交叉的绕制方法。同时,采用自我屏蔽作用较为良好的罐形磁芯,将线圈都用磁芯封在里边。总体设计方案(3)反馈控制回路电容C6决定软起动恢复时间,C6、R5、R4、C5、D7决定控制回路的零点。R4阻值过小,限流线性差,容易导致TOP开关损坏;过大则调整线性差。在实验中取值为10kΩ(4)输出回路N3、D10、C8、D11构成输出回路。肖特基势垒整流二极管D10对高频变压器次级的高频方波电压进行整流,经低ESR值的电解电容滤波及双向瞬态电压抑制二极管D11削峰稳压后,提供给负载电路。R7既可改善电源本身的输出阻抗,又能小幅度地调整输出电压的范围,同时又可在电源空载时为电容C8提供放电回路。R7取值为430Ω。TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA与CA构成截止频率为7kHz的低通滤波器。主要特点是:(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;(3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;(4)电压型控制方式与逐周期峰值电流限制。下面简要叙述一下:(1)控制电压源控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流Ic则能调节占空比。控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。刚起动电路时由DC极之间的高压电流源提供控制端电流Ic,以便给控制电路供电并对Ct充电。(2)带隙基准电压源带隙基准电压源除向内部提供各种基准电压之外,还产生一个具有温度补偿并可调整的电流源,以保证精确设定振荡器频率和门极驱动电流。(3)振荡器内部振荡电容是在设定的上、下阈值UH、UL之间周期性地线性充放电,以产生脉宽调制器所需要的锯齿波(SAW),与此同时还产生最大占空比信号(Dmax)和时钟信号(CLOCK)。为减小电磁干扰,提高电源效率,振荡频率(即开关频率)设计为100kHz,脉冲波形的占空比设定为D。(7)过流保护电路过流比较器的反相输入端接阈值电压ULIMIT,同相输入端接MOSFET管的漏极。此外,芯片还具有初始输入电流限制功能。刚通电时可将整流后的直流限制在0.6A或0.75A。(8)过热保护电路当芯片结温TJ>135℃时,过热保护电路就输出高电平,将触发器Ⅱ置位,Q=1,Q=0,关断输出级。此时进入滞后调节模式,Uc端波形也变成幅度为4.7V~5.7V的锯齿波。若要重新起动电路,需断电后再接通电源开关;或者将控制端电压降至3.3V以下,达到Uc(reset)值,再利用上电复位电路将触发器Ⅱ置零,使MOSFET恢复正常工作。(9)关断/自起动电路一旦调节失控,关断/自动重起动电路立即使芯片在5%占空比下工作,同时切断从外部流入C端的电流,Uc再次进入滞后调节模式。倘若故障己排除,Uc又回到并联调节模式,自动重新起动电源恢复正常工作。自动重起动的频率为1.2Hz。(10)高压电流源在起动或滞后调节模式下,高压电流源经过电子开关S1给内部电路提供偏置,并且对Ct进行充电。电源正常工作时S1改接内部电源,将高压电流源关断。当TOP开关起动操作时,在控制端环路振荡电路的控制下,漏极端有电流流入芯片,提供开环输入。该输入通过旁路调整器、误差放大器时,由控制端进行闭环调整,改变Ir,经由PWM控制MOSFET的输出占空比,最后达到动态平衡。TOP开关内部工作原理框图高频变压器的参数设计输入电压为AC85-265V(50Hz);工作频率为100KHz;输出电压为12V,输出电流为2.5A;电源效率为90%。设损耗分配系数为Z=0.5(一次侧与二次侧损耗各占50%):(1)根据V1、P0值来确定输入滤波电容C3的容量、直流输入电压最小值V1(min)查表可知:C3=2*90uF=180uFv/VP0/W比例系数/(uF/W)Cin/UfV1(min)/V通用输入:85-265已知2-3(1-3)P0>=90根据输入电压V,确定一次感应电压Vor和钳位二极管反向击穿电压Vb(V)查右表可知:Vor=135V,Vb=200V,由Vb的值选用P6KE200瞬态电压抑制器高频变压器的一次电感量Lp通过查表,可计算出Lp=628uH可选择EE30磁芯,磁芯长度A=30mm,Ae=115mm^2,窗口面积Be=52.9mm^2.v/V一次感应电压Vor/V钳位二极管反向击穿电压Vb/V固定输入:100/1156090固定输入:200/260135200通用输入:85-265100-135200确定高频变压器的匝数(1)计算次级隔离输出绕组匝数N3:已知V=85-265V,Vo=12V,考虑到肖特基二极管还有最大正向导通电压0.8V。当V=85-265V是,首先取N3的初始值为0.5匝/V,计算出次级绕组匝数N3为

N3=0.5(Vo+Vfm)=0.5*(12+0.8)=7匝(2)计算初级绕组N1:

N1=N3*[Vor/(Vo+Vfm)]=7*60/(12+0.8)=35匝

(3)计算反馈绕组N2:N2=N3*(Vfb+Vf2)/(Vo+Vf1)=7*(27.7+0.7)/(12+0.4)=15匝输出整流滤波电路的设计输出整流滤波电路由整流二极管和滤波电容构成。输出整流二极管的开关损耗占系统损耗的1/6到1/5,是影响开关电源效率的主要因素,它包括正向导通损耗和反向恢复损耗。由于肖特基二极管导通时正向压降较低,因此其具有很低的正向导通损耗。此外,肖特基二极管反向恢复时问短,在降低反向恢复损耗以及消除输出电压中的纹波方面有明显的性能优势,所以选用肖特基二极管作为整流二极管。选取的原则是根据最大反向峰值电压。次级绕组的反向峰值电压Vsm式中,Vs

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论