版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022黑龙江省伊春市宜春龙凤中学高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知奇函数f(x)在[﹣1,0]上为单调减函数,又α,β为锐角三角形内角,则(
)A.f(cosα)>f(cosβ) B.f(sinα)>f(sinβ) C.f(sinα)<f(cosβ) D.f(sinα)>f(cosβ)参考答案:C【考点】余弦函数的单调性.【专题】计算题;压轴题.【分析】由“奇函数y=f(x)在[﹣1,0]上为单调递减函数”可知f(x)在[0,1]上为单调递减函数,再由“α、β为锐角三角形的两内角”可得到α+β>,转化为α>﹣β,两边再取正弦,可得sinα>sin(﹣β)=cosβ>0,由函数的单调性可得结论.【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数,∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴α>﹣β,∴sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ).故选C.【点评】题主要考查奇偶性和单调性的综合运用,还考查了三角函数的单调性.属中档题.2.“珠算之父”程大为是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成,程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节储三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为(
)A.1.9升
B.2.1升
C.2.2升
D.2.3升参考答案:B3.已知点,若直线过点与线段相交,则直线的斜率的取值范围是(
)A.
B.
C.
D.参考答案:C略4.函数y=的图象是()A. B. C. D.参考答案:A【考点】函数的图象.【分析】根据x的变化趋势,得到y的变化趋势,问题得以解决.【解答】解:当x→﹣∞时,x3→﹣∞,3x﹣1→﹣1,故y→+∞,当x→+∞时,x3→+∞,3x﹣1→+∞,且故y→0,故选:A.5.二次函数y=ax2+bx+c中,a?c<0,则函数的零点个数是(
)A.1 B.2 C.0 D.无法确定参考答案:B【考点】二次函数的性质.【专题】计算题.【分析】有a?c<0,可得对应方程ax2+bx+c=0的△=b2﹣4ac>0,可得对应方程有两个不等实根,可得结论.【解答】解:∵ac<0,∴△=b2﹣4ac>0,∴对应方程ax2+bx+c=0有两个不等实根,故所求二次函数与x轴有两个交点.故选
B【点评】本题把二次函数与二次方程有机的结合了起来,有方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点,也就是求函数的图象与x轴的交点的横坐标.6.从装有2个红球和2个白球的袋内任取两个球,那么下列事件中,对立事件的是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰好有一个白球;恰好有2个白球D.至少有1个白球;都是红球参考答案:D【考点】互斥事件与对立事件.【分析】从装有2个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论.【解答】解:从装有2个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,从装有2个红球和2个白球的红袋内任取两个球,则“至少有一个白球”和“都是红球”是对立事件,故选D.7.若全集,则集合的真子集共有(
)A.个
B.个
C.个
D.个参考答案:C
解析:,真子集有8.在体积为15的斜三棱柱ABC-A1B1C1中,S是C1C上的一点,S-ABC的体积为3,则三棱锥S-A1B1C1的体积为A.1
B.
C.2
D.3参考答案:C略9.已知集合,,且,则实数的取值范围是
A.
B.
C.
D.参考答案:B10.如图给出了函数y=ax,y=logax,y=log(a+1)x,y=(a﹣1)x2的图象,则与函数y=ax,y=logax,y=log(a+1)x,y=(a﹣1)x2依次对应的图象是()A.①②③④ B.①③②④ C.②③①④ D.①④③②参考答案:B【考点】对数函数的图象与性质.【分析】由二次函数的图象为突破口,根据二次函数的图象开口向下得到a的范围,然后由指数函数和对数函数的图象的单调性得答案.【解答】解:由图象可知y=(a﹣1)x2为二次函数,且图中的抛物线开口向下,∴a﹣1<0,即a<1.又指数函数和对数函数的底数大于0且不等于1,∴y=ax为减函数,图象为①;y=logax为减函数,图象为③;y=log(a+1)x为增函数,图象为②.∴与函数y=ax,y=logax,y=log(a+1)x,y=(a﹣1)x2依次对应的图象是①③②④.故选B.二、填空题:本大题共7小题,每小题4分,共28分11.的值为
▲
.参考答案:312.已知4a=2,lgx=a,则x=
.参考答案:【考点】对数的运算性质.【专题】计算题.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.13.=
。参考答案:略14.函数的定义域为_____________________.参考答案:试题分析:由题意得,即,解得.考点:函数的定义域及其求法.15.函数的定义域为
.参考答案:16.如果幂函数的图象不过原点,则的取值是
.参考答案:117.在y轴上截距为1,且与直线2x-3y-7=0的夹角为的直线方程是______________.参考答案:5x-y+1=0或x+5y-5=0由题意知斜率存在,设其为k,则直线方程为y=kx+1.则.解得k=5或.∴直线方程为y=5x+1或y=,即5x-y+1=0或x+5y-5=0.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,在四棱锥P-ABCD中,四边形ABCD为矩形,为等腰三角形,,平面PAD⊥平面ABCD,且分别为的中点.(1)证明:平面;(2)证明:平面平面;(3)求三棱锥的体积.参考答案:(1)证明见解析;(2)证明见解析;(3).【分析】(1)在平面中找的平行线;(2)转化为平面;(3)以四边形为底面,与中点的连线为高求体积.【详解】(1)证明:取的中点,连结,∵中,分别为的中点,∴,,∵分别为的中点,∴,,∴,,∴为平行四边形,∴,∵平面,平面,∴平面;(2)证明:∵平面平面,,平面平面,∴平面,∵平面∴平面平面(3)取中点,连结,∵平面平面及为等腰直角三角形,∴平面,即为四棱锥的高,∵,∴,∴.【点睛】本题考查线面平行和面面垂直的证明;以及锥体体积的计算.19.已知函数(1)判断的奇偶性并给予证明;(2)求满足的实数的取值范围.参考答案:(1)奇函数;
;是奇函数(2)或或20.已知函数f(x)=.(1)求f(﹣4)、f(3)、f(f(﹣2))的值;(2)若f(a)=10,求a的值.参考答案:【考点】分段函数的应用.【专题】计算题.【分析】(1)根据分段函数各段的对应法则,分别代入可求.(2)由f(a)=10,需要知道a的范围,从而求出f(a),从而需对a进行分(1)a≤﹣1;﹣1<a<2;a≥2三种情况进行讨论.【解答】解:(1)f(﹣4)=﹣2,f(3)=6,f(f(﹣2))=f(0)=0(2)当a≤﹣1时,a+2=10,得:a=8,不符合
当﹣1<a<2时,a2=10,得:a=,不符合;
a≥2时,2a=10,得a=5,所以,a=5.【点评】本题考查分段函数求值及由函数值求解变量a的值,解题的关键是要根据a的不同取值,确定相应的对应关系,从而代入不同的函数解析式中,体现了分类讨论的思想在解题中的应用.21.设求的最大值和最小值.参考答案:解得.又.令,则当时,
22.已知,且.(1)若,求与的夹角;(2)若,求的值.参考答案:(1);(2).试题分析:(1)根据所给的点的坐标写出要用的向量的坐标,因为向量的模长是已知数值,代入坐标进行运算,得到关于角的关系式,结合同角的三角函数的关系,得到角的值,从而得到向量夹角的值;(2)根据所给的向量的坐标和向量垂直的条件,写出角的三角函数式之间的关系,通过三角变换得到要求的角的余弦值,本题主要解题思想是把两角之和和两角之积作为整体来处理.试题解析:(1),,,又,即又,与夹角为.(2),,,,①,,,又由,,②由①、②得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年债券担保资产证券化项目合作协议3篇
- 浙教版(2023)小学信息技术三年级上册第1课《认识在线社会》教学实录及反思
- 2024年度知识产权质押反担保合同实施细则3篇
- 2023一年级数学上册 5 6-10的认识和加减法第3课时 6、7加减法配套教学实录 新人教版
- 学生会部长演讲稿汇编15篇
- 煤矿类实习报告范文汇编九篇
- 入职转正申请书(集合15篇)
- 个人原因辞职申请书合集7篇
- 年度工作计划汇编五篇
- 建筑实习报告8篇
- 2024年广州市南沙区初中语文毕业班模拟考试卷(附答案解析)
- 简单室内装修合同2024年
- 重庆江北国际机场有限公司招聘笔试题库2024
- 第11讲 地表形态与人类活动(高考一轮复习课件)
- 地下水动力学智慧树知到期末考试答案章节答案2024年长安大学
- GB/T 44143-2024科技人才评价规范
- 中国绿色算力发展研究报告(2024年)
- 环境管理与可持续发展管理制度
- 哈齐铁路客运专线无砟轨道测量监理实施细则
- DZ/T 0462.1-2023 矿产资源“三率”指标要求 第1部分:煤(正式版)
- 律师事务所文档排版格式指引
评论
0/150
提交评论