Big-Data-大数据介绍(全英)_第1页
Big-Data-大数据介绍(全英)_第2页
Big-Data-大数据介绍(全英)_第3页
Big-Data-大数据介绍(全英)_第4页
Big-Data-大数据介绍(全英)_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BigDataWeipingChenTopicsWhatisBigData?Why‘BigData’isabigdeal?NoSQLvsSQLHowtoDealwithBigData?What’sHadoop/MapReduce?RDBMSvsHadoop/MapReduceBigdataplayers/SoftwareTools/PlatformsExamplesWhatIsBigData?CapturingandmanaginglotsofinformationWorkingwithmanynewtypesofdataStructure/UnstructuredExploitingthesemassesofinformationandnewdatatypeswithnewstylesofapplicationsBiggerthanTerabytesvolume,variety,velocity,variabilityWhy‘BigData’isabigDealBigdatadiffersfromtraditionalinformationinmind-bendingways:

NotknowingwhybutonlywhatThechallengewithleadershipisthatit’sverydrivenbygutinstinctinmostcasesAirtravelerscannowfigureoutwhichflightsarelikeliesttobeontime,thankstodatascientistswhotrackedadecadeofflighthistorycorrelatedwithweatherpatternsPublishersusedatafromtextanalysisandsocialnetworkstogivereaderspersonalizednews.healthcareisoneofthebiggestopportunities,IfwehadelectronicrecordsofAmericansgoingbackgenerations,we'dknowmoreaboutgeneticpropensities,correlationsamongsymptoms,andhowtoindividualizetreatments.Googlemapsearchcorrelateto“Openretailstoreetc.”WhatThisMeansforYou

BigDatacanhelpacompanydomanythings:ProfilecustomersDeterminepricingstrategiesIdentifycompetitiveadvantagesBettertargetadvertisingInforminternalresearchandproductdevelopmentStrengthencustomerserviceMainstepsinadoptingananalyticalsystemWhatWillWeAnalyze?DoWeBuyorBuild?AreWeReadytoInvest?DoWeUnderstandtheImpact?ChallengesInformationgrowthProcessingpowerPhysicalstoragediskcapacityincreasedramatically100MB/Sreadfromdisk(bottleneck)dataseekingtimeisslowthandatatransferringDataissuesCostsRecentlyITTrendCommodityhardwareDistributedfilesystemsOpensourceoperatingsystems,databases,andotherinfrastructureSignificantlycheaperstorageService-orientedarchitecture

BigDataChainCollectDataIngest/CleanData(OriginallyETL.Existingschema)Humanexploration/Infrastructure/DataminingStore/ArchiveShare(decisionmake,othersystem)Measure/feedbackACIDACID(Atomicity,Consistency,Isolation,Durability)

(A)whenyoudosomethingtochangeadatabasethechangeshouldworkorfailasawhole(C)thedatabaseshouldremainconsistent(thisisaprettybroadtopic)(I)ifotherthingsaregoingonatthesametimetheyshouldn'tbeabletoseethingsmid-update(D)ifthesystemblowsup(hardwareorsoftware)thedatabaseneedstobeabletopickitselfbackup;andifitsaysitfinishedapplyinganupdate,itneedstobecertainMapReduceDividingandconqueringHighlyfaulttolerantnodesareexpectedtofail•Everydatablock(bydefault)replicatedon3nodes(isalsorackaware)DifficulttoimplementRDBMSfixed-schema,row-orienteddatabaseswithACIDpropertiesandasophisticatedSQLqueryengine.Theemphasisisonstrongconsistency,referentialintegrity,abstractionfromthephysicallayer,andcomplexqueriesthroughtheSQLlanguage.easilycreatesecondaryindexes,performcomplexinnerandouterjoins,count,sum,sort,group,andpageyourdataacrossanumberoftables,rows,andcolumns.RDBMSvsMapReduceRDBMSMapReducemostlystructureddataunstructureddatadatainternalstructurenone(doesinprocess)normalizedneednon-nomalizeNotes:1.relationaldatabasesstartincorporatingsomeoftheideasfromMapReduce(suchasAsterData’sandGreenplum’sdatabases)2.theotherdirection,ashigher-levelquerylanguagesbuiltonMapReduce(suchasPigandHive)makeMapReducesystemsmoreapproachablefortraditionaldatabaseprogrammers.ArchitechuresHowdoesMapReduceworkHDFS(HadoopDistributedFileSystem)

DataisstoredonlocaldiskandprocessingisdonelocallyonthecomputerwiththedataCanworkwithrawdatastoredinfilesystemordatabaseTwosteps:MapandReduce

MapMapReduceuseskey/valuepairs.(Traditionallyusingrowsandcolumns)

Example:lastname/chen

withdrawamount/20

transactiondate/06-23-2013Reducealltheintermediatevaluesforagivenoutputkeyarecombinedtogetherintoalist.Thereduce()functionthencombinestheintermediatevaluesintooneormorefinalvaluesforthesamekey.HadoopHadoopisdesignedtoabstractawaymuchofthecomplexityofdistributedprocessingDifferentfromGRIDcomputingWidelyusedSocialmedia(e.g.,Facebook,Twitter)

Lifesciences

Financialservices

Retail

GovernmentHadoopArchitectureApplicationlayer/enduseraccesslayera.JobTracker(workloadmanagementlayer)b.Distributedparallelfilesystems/datalayerHadoopImplementationHadoopisdesignedtorunjobsthatlastminutesorhoursontrusted,dedicatedhardwarerunninginasingledatacenterwithveryhighaggregatebandwidthinterconnectsDesignofHDFSNamenodes(TheMaster)Managemetadata/filetreesDatanodes(Workers)

store/retrievedatablockDatanodesdonotuseRAIDdisk.HDFSround-robinsHDFSblocksbetweenalldisks.RAIDlimitedbytheslowestdiskonthearray.

LimitationsofHDFSLow-latencydataaccessLotsofsmallfilesMultiplewriters,arbitraryfilemodificationsHDFSBlock64MB/128MB(normaldiskblock512KB).minimize‘seek’timefixedsizeratherthanfile,easystorage/replication%hadoopfsck/-files–blocks%hadoopfs–help(regularfilesystemoperation)%hadoopfs-copyFromLocalinput/docs/quangle.txthdfs://localhost/user/tom/quangle.txt%hadoopfs-mkdirbooks%hadoopfs-lsDataflowsFormatandTypesMapReducemodelindetail,and,inparticular,howdatainvariousformats,fromsimpletexttostructuredbinaryobjects,canbeusedwiththismodelmap:(K1,V1)→list(K2,V2)reduce:(K2,list(V2))→list(K3,V3)TextfileOnthetopoftheCrumpettyTreeTheQuangleWanglesat,Buthisfaceyoucouldnotsee,OnaccountofhisBeaverHat.isdividedintoonesplitoffourrecords.Therecordsareinterpretedasthefollowingkey-valuepairs:(0,OnthetopoftheCrumpettyTree)

(33,TheQuangleWanglesat,)(57,Buthisfaceyoucouldnotsee,)(89,OnaccountofhisBeaverHat.)DataFileMapreduceSpecialFeatureCounterSortingJoinsShuffle

MapReduceguaranteesthattheinputtoeveryreducerissortedbykey.Theprocessbywhichthesystemperformsthesort—andtransfersthemapoutputstothereducersasinputs-ShuffleInstallHadoop%cd/usr/local%sudotarxzfhadoop-x.y.z.tar.gzchangetheowneroftheHadoopfilestobethehadoopuserandgroup:%sudochown-Rhadoop:hadoophadoop-x.y.zLayers/Players--continueExtract,transform,load(ETL)

IBMInfoSphereDataStageInformaticaPervasiveTalendDatawarehouse

Oracle,Teradata,IBMNetezza,Greenplum

PIG–HelpHadoopPigisascriptinglanguageforexploringlargedatasetsAPigLatinprogramismadeupofaseriesofoperations,ortransformations,thatareappliedtotheinputdatatoproduceoutput2.PigexecutionenvironmenttranslatesintoanexecutablerepresentationandthenrunsHbaseHBaseisadistributedcolumn(family)-orienteddatabasebuiltontopofHDFS.HBaseistheHadoopapplicationtousewhenyourequirereal-timeread/writerandom-accesstoverylargedatasetsHBasetablesarelikethoseinanRDBMS,onlycellsareversioned,rowsaresorted,andcolumnscanbeaddedontheflybytheclientaslongasthecolumnfamilytheybelongtopreexists.Hbase--continueRegions

Eachregioncomprisesasubsetofatable’srowsprovidewaystoreadorwriteindividualrecordsefficientlybasedonHadoopHiveHive—anopensourcedatawarehousingandSQLinfrastructurebuiltontopofHadoopCloudera’sDistributionforHadoopCloudera’sDistributionforHadoopisbasedonthemostrecentstableversionofApacheHadoopwithnumerouspatches,backports,andupdatesEvaluateCriteriaHighscalabilityLowlatencyPredictabilityHighavailabilityEasymanagementMulti-tenancyBigDataRealtimeProcessingGoogleBigQueryisawebservicethatletsyoudointeractiveanalysisofmassivedatasets—uptobillionsofrowsTwitter’sStormClouderaImpalaNoSQLNoSQLreferstodocument-orienteddatabasesSQLdoesn’tscalewellhorizontally(addmoreserverswhichCloudisgoodat)Itisschemaless.Butnotformless(JSONformat).JSON:datainterchangeformatMongoDatabaseCouchDatabaseNoSQLBaseModelBaseModelBasicAvailability:spreaddataacrossmanystoragesystemswithahighdegreeofreplicationSoftState:dataconsistencyisthedeveloper'sproblemandshouldnotbehandledbythedatabase.EventualConsistency:atsomepointinthefuture,datawillconvergetoaconsistentstate.Noguaranteesaremade“when”JSONStructure{field1:value1,field2:value2…fieldN:valueN}varmydoc={_id:ObjectId("5099803df3f4948bd2f98391"),name:{first:"Alan",last:"Turing"},birth:newDate('Jun23,1912'),death:newDate('Jun07,1954'),contribs:["Turingmachine","Turingtest",…],views:NumberLong(1250000)}RDBMSvsNoSQLXszcRowDB:001:10,Smith,Joe,40000;002:12,Jones,Mary,50000;003:11,Johnson,Cathy,44000;004:22,Jones,Bob,55000;index:001:40000;002:50000;003:44000;004:55000;ColumnDB:10:001,12:002,11:003,22:004;Smith:001,Jones:002,Johnson:003,Jones:004;Joe:001,Mary:002,Cathy:003,Bob:004;40000:001,50000…;Smith:001,Jones:002,004,Johnson:003;…BenefitsColumn-orientedorganizationsaremoreefficientwhenanaggregateneedstobecomputedovermanyrowsbutonlyforanotablysmallersubsetofallcolumnsofdata,becausereadingthatsmallersubsetofdatacanbefasterthanreadingalldata.Column-orientedorganizationsaremoreefficientwhennewvaluesofacolumnaresuppliedforallrowsatonce,becausethatcolumndatacanbewrittenefficientlyandreplaceoldcolumndatawithouttouchinganyothercolumnsfortherows.Row-orientedorganizationsaremoreefficientwhenmanycolumnsofasinglerowarerequiredatthesametime,andwhenrow-sizeisrelativelysmall,astheentirerowcanberetrievedwithasinglediskseek.Row-orientedorganizationsaremoreefficientwhenwritinganewrowifallofthecolumndataissuppliedatthesametime,astheentirerowcanbewrittenwithasinglediskseek.SQLvsNonSQLAgoodcompromiseistodesignyoursystemwith3logicalDBs1.NormalSQLDBusedbyyouradminapplicationtocreatecontent.

2.No-SQLDBforfront-end/public/high-volumeapplicaitonusedbythepublicinternet.

3.ThelastDBisforanalyticalreportingsystemusingcubesandallthatgoodstuff.ThendataflowsfromtheAdminDBtotheclientNo-SQLDBwhensomeone"Publishes"apieceofcontent,theclient(NoSQL)dbprovidesveryfastreadaccessandrecordsuserinteractionswiththecontent.ThenyouhaveascheduledjobthatpullsthedatafromtheclientDBintothereportingsystem.SinceAdmin,client,andreportingareoftenseparateapps,eachapplicationteamcanworkwithdataintheformatthatbestservestheapplicationandthetransitionfromonesystemtotheotherishandledintheservicelayers.BigDataSolutionsCloudera:ClouderaEnterpriseMicrosoft:WindowsAzureHDInsightServiceGoogle:BigQueryAmazon:DynamoDBIBM:InfoSphereStreams/NetezzaEMC:GreenplumTeraData:AsterMapReducePlatformOracle:Hadoop/MapreduceBigDataconnectorsBigDataProjectFailReasonsLackofcooperationamongdepartmentsLackof

staff

experiencedinBigDataSecurityPoorplanningRealExamplesofBigDataProjectsConsumerproductcompaniesandretailorganizationsaremonitoringsocialmedialikeFacebookandTwittertogetanunprecedentedviewintocustomerbehavior,preferences,andproductperception.Manufacturersaremonitoringminutevibrationdatafromtheirequipment,whichchangesslightlyasitwearsdown,topredicttheoptimaltimetoreplaceormaintain.Replacingittoosoonwastesmoney;replacingittoolatetriggersanexpensiveworkstoppageManufacturersarealsomonitoringsocialnetworks,butwithadifferentgoalthanmarketers:Theyareusingittodetectaftermarketsupportissuesbeforeawarrantyfailurebecomespubliclydetrimental.FinancialServicesorganizationsareusingdataminedfromcustomerinteractionstosliceanddicetheirusersintofinelytunedsegments.Thisenablesthesefinancialinstitutionstocreateincreasinglyrelevantandsophisticatedoffers.ContinuationAdvertisingandmarketingagenciesaretrackingsocialmediatounderstandresponsivenesstocampaigns,promotions,andotheradvertisingmediums.InsurancecompaniesareusingBigDataanalysistoseewhichhomeinsuranceapplicationscanbeimmediatelyprocessed,andwhichonesneedavalidatingin-personvisitfromanagent.Byembracingsocialmedia,retailorganizationsareengagingbrandadvocates,changingtheperceptionofbrandantagonists,andevenenablingenthusiasticcustomerstoselltheirproducts.Hospitalsareanalyzingmedicaldataandpatientrecordstopredictthosepatientsthatarelikelytoseekreadmissionwithinafewmonthsofdischarge.Thehospitalcantheninterveneinhopesofpreventinganothercostlyhospitalstay.Web-basedbusinessesaredevelopinginformationproductsthatcombinedatagatheredfromcustomerstooffermoreappealingrecommendationsandmoresuccessfulcouponprograms.Thegovernmentismakingdatapublicatboththenational,state,andcitylevelforuserstodevelopnewapplicationsthatcangeneratepublicgood.Sportsteamsareusingdatafortrackingticketsalesandevenfortrackingteamstrategies.StartingBigDataProjectsNYTD(NationalYouthinTransitionDatabase)DocumentationSearchDynamicSQLtableWWWlogfilesHealthCare:extractingnames,locations,dates,products,diseases,Rx,conditions,etc.,fromtextNYTD(NationalYouthTransitinalDatabase)DatacolectionsystemtotracktheStatesaretocollectinformationoneachyouthwhoreceivesindependentlivingservicespaidfororprovidedbytheStateagencythatadministerstheCFCIP.Second,StatesaretocollectdemographicandoutcomeinformationoncertainyouthinfostercarewhomtheStatewillfollowovertimetocollectadditionaloutcomeinformationthe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论