版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二讲ARCH建模分析NullHypothesis:JPYhasaunitrootExogenous:ConstantLagLength:0(AutomaticbasedonSIC,MAXLAG=23)t-StatisticProb.*AugmentedDickey-Fullerteststatistic-1.4851510.5411Testcriticalvalues: 1%level-3.4347275%level-2.86336010%level-2.567788*MacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(JPY)Method:LeastSquaresDate:07/20/11Time:15:45Sample(adjusted):21427Includedobservations:1426afteradjustmentsCoefficientStd.Errort-StatisticProb.JPY(-1)-0.0028460.001916-1.4851510.1377
JPY(-1)-0.0028460.001916-1.4851510.1377C0.3256800.217886 1.4947240.1352R-squared0.001547Meandependentvar0.004306AdjustedR-squared0.000845S.D.dependentvar0.962519S.E.ofregression0.962112Akaikeinfocriterion2.762029Sumsquaredresid1318.138Schwarzcriterion2.769410Loglikelihood-1967.327Hannan-Quinncriter.2.764786F-statistic2.205674Durbin-Watsonstat1.918201Prob(F-statistic)0.137725NullHypothesis:D(JPY)hasaunitrootExogenous:ConstantLagLength:0(AutomaticbasedonSIC,MAXLAG=23)t-StatisticProb.*AugmentedDickey-Fullerteststatistic-36.276440.0000Testcriticalvalues: 1%level-3.4347305%level-2.86336210%level-2.567789*MacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(JPY,2)Method:LeastSquaresDate:07/20/11Time:15:45Sample(adjusted):31427Includedobservations:1425afteradjustmentsCoefficientStd.Error t-StatisticProb.D(JPY(-1))-0.9606490.026481 -36.276440.0000C0.0035270.025489 0.1383720.8900R-squared0.480464Meandependentvar-0.000484AdjustedR-squared0.480098S.D.dependentvar1.334414S.E.ofregression0.962169Akaikeinfocriterion2.762149Sumsquaredresid1317.369Schwarzcriterion2.769534Loglikelihood-1966.031Hannan-Quinncriter.2.764907F-statistic1315.980Durbin-Watsonstat2.003086Prob(F-statistic)0.000000
Date:07/20/11Time:15:51Sample:11427Includedobservations:1426AutocorrelationPartialCorrelationACPACQ-StatProb| || |10.0390.0392.21270.137| || |20.0510.0505.92880.052*| |*| |3-0.084-0.08815.9720.001| || |40.0130.01716.2070.003| || |50.0110.01916.3730.006| || |6-0.009-0.02016.4990.011| || |7-0.005-0.00316.5350.021| || |8-0.016-0.01216.9020.031| || |90.0420.04119.4730.021| || |100.0040.00119.4910.034DependentVariable:DJPYMethod:LeastSquaresDate:07/20/11Time:15:52Sample(adjusted):51427Includedobservations:1423afteradjustmentsConvergenceachievedafter3iterations
CoefficientStd.Error t-StatisticProb.C0.0037690.025581 0.1473480.8829AR(1)0.0422080.026442 1.5962260.1107AR(2)0.0525420.026427 1.9881550.0470AR(3)-0.0880080.026434 -3.3293480.0009R-squared0.011726Meandependentvar0.003717AdjustedR-squared0.009637S.D.dependentvar0.963127S.E.ofregression0.958476Akaikeinfocriterion2.755862Sumsquaredresid1303.600Schwarzcriterion2.770649Loglikelihood-1956.796Hannan-Quinncriter.2.761385F-statistic5.612164Durbin-Watsonstat1.995686Prob(F-statistic)0.000798InvertedARRoots.26+.35i.26-.35i -.47DependentVariable:DJPYMethod:LeastSquaresDate:07/20/11Time:15:53Sample(adjusted):51427Includedobservations:1423afteradjustmentsConvergenceachievedafter3iterationsCoefficientStd.Error t-StatisticProb.C0.0037730.024639 0.1531310.8783AR(2)0.0541320.026423 2.0486680.0407AR(3)-0.0859170.026416 -3.2524770.0012R-squared0.009951Meandependentvar0.003717AdjustedR-squared0.008557S.D.dependentvar0.963127S.E.ofregression0.958998Akaikeinfocriterion2.756250Sumsquaredresid1305.941Schwarzcriterion2.767340Loglikelihood-1958.072Hannan-Quinncriter.2.760393F-statistic7.136498Durbin-Watsonstat1.911536Prob(F-statistic)0.000824InvertedARRoots.24+.35i.24-.35i -.48HeteroskedasticityTest:ARCH
F-statistic97.72172Prob.F(1,1420)0.0000Obs*R-squared91.55847Prob.Chi-Square(1)0.0000TestEquation:DependentVariable:RESIDA2Method:LeastSquaresDate:07/20/11Time:15:55Sample(adjusted):61427Includedobservations:1422afteradjustmentsCoefficientStd.Error t-StatisticProb.C0.6847130.072648 9.4250290.0000RESIDA2(-1)0.2537560.025670 9.8854300.0000R-squared0.064387Meandependentvar0.917755AdjustedR-squared0.063728S.D.dependentvar2.678019S.E.ofregression2.591282Akaikeinfocriterion4.743588Sumsquaredresid9534.934Schwarzcriterion4.750986Loglikelihood-3370.691Hannan-Quinncriter.4.746351F-statistic97.72172Durbin-Watsonstat2.060792Prob(F-statistic)0.000000DependentVariable:DJPYMethod:ML-ARCH(Marquardt)-NormaldistributionDate:07/20/11Time:15:57Sample(adjusted):51427Includedobservations:1423afteradjustmentsConvergenceachievedafter13iterationsPresamplevariance:backcast(parameter=0.7)GARCH=C(5)+C(6)*RESID(-1)A2CoefficientStd.Errorz-StatisticProb.C0.0259060.0249331.0390160.2988AR(1)0.0890120.0280063.1782980.0015AR(2)0.0185650.0197950.9378790.3483AR(3)-0.0794640.022490-3.5333850.0004VarianceEquationC0.6808040.01981734.354240.0000
RESID(-1)A20.2556580.026009 9.8295950.0000R-squared0.007915Meandependentvar0.003717AdjustedR-squared0.004415S.D.dependentvar0.963127S.E.ofregression0.960999Akaikeinfocriterion2.667634Sumsquaredresid1308.627Schwarzcriterion2.689815Loglikelihood-1892.022Hannan-Quinncriter.2.675919F-statistic2.261070Durbin-Watsonstat2.091851Prob(F-statistic)0.046239InvertedARRoots.25-.36i.25+.36i -.42DependentVariable:DJPYMethod:ML-ARCH(Marquardt)-NormaldistributionDate:07/20/11Time:15:59Sample(adjusted):51427Includedobservations:1423afteradjustmentsConvergenceachievedafter22iterationsPresamplevariance:backcast(parameter=0.7)GARCH=C(2)+C(3)*RESID(-1)A2+C(4)*RESID(-2)A2+C(5)*RESID(-3)A2+C(6)*RESID(-4)A2+C(7)*RESID(-5)A2+C(8)*RESID(-6)A2+C(9)*RESID(-7)A2CoefficientStd.Errorz-StatisticProb.AR(3)-0.0544870.030207-1.8038070.0713VarianceEquationC0.3608350.02537614.219730.0000RESID(-1)A20.1362950.0213886.3724960.0000RESID(-2)A20.0779440.0202193.8549130.0001RESID(-3)A20.1176880.0283794.1470170.0000RESID(-4)A20.0962770.0257473.7393290.0002RESID(-5)A20.0507000.0229082.2132420.0269RESID(-6)A20.0732050.0195993.7351320.0002RESID(-7)A20.0649050.0279342.3235630.0201R-squared0.006149Meandependentvar0.003717AdjustedR-squared0.000526S.D.dependentvar0.963127S.E.ofregression0.962874Akaikeinfocriterion2.588394Sumsquaredresid1310.956Schwarzcriterion2.621665Loglikelihood-1832.643Hannan-Quinncriter.2.600822Durbin-Watsonstat1.911257
InvertedARRoots.19+.33i.19-.33i-.38InvertedARRoots.19+.33i.19-.33i-.38DependentVariable:DJPYMethod:ML-ARCH(Marquardt)-NormaldistributionDate:07/20/11Time:16:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泥塑工艺品市场发展预测和趋势分析
- 2024年度PE管材批量采购价格谈判合同
- 2024年度广告代理合同:某品牌委托广告公司进行广告代理
- 2024年度挖掘机广告投放合同
- 2024年度建筑施工技术咨询合同
- 通话筒市场需求与消费特点分析
- 运载工具用玻璃窗项目评价分析报告
- 2024年度水泥行业广告宣传合同
- 2024年度智能移动办公设备采购合同
- 2024年度民间房产抵押借款合同
- 关于健康的课件图片
- 2024年度上海市高校教师资格证之高等教育心理学题库与答案
- 第三章+相互作用-力+大单元教学设计 高一上学期物理人教版(2019)必修第一册
- 中国航空协会:2024低空经济场景白皮书
- 体育赛事组织服务协议
- 适合全院护士讲课
- 2024年医学高级职称-全科医学(医学高级)考试近5年真题集锦(频考类试题)带答案
- 2024年全国半导体行业职业技能竞赛(智能硬件装调员赛项)理论考试题库(含答案)
- 自然科学基金项目申报书(模板)
- 2024年木屑购销合同范本
- 部编版二年级上册-课文一-快乐读书吧:读读童话故事-孤独的小螃蟹(课件)(共26张课件)
评论
0/150
提交评论