版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一部分边坡稳定性分析原理及防治措施1.边坡稳定性基本原理1.1边坡稳定性精确分析原理要对边坡稳定性问题进行精确分析,首先要对材料性能进行透彻的的研究实验,查清它的各种应力--应变关系以及它的屈服、破坏条件。假定这些问题都已查清,那么从理论上讲,边坡在指定荷载下的稳定性问题是可以精确解决的。七步骤大致如下:(1) 进行边坡在指定荷载下的应力、变形的精确分析。分析过程中,要采用合理的数学模型来反映材料的特性,务使这种数学模型能够如实表达出材料的主要性能,例如应力—应变间的非线性、卸载增荷性质、屈服破坏性质等等。分析工作要通过计算机和非线性有限单元法进行。(2) 这种精确计算的数学分析将给出各点应力、应变值。例如,就抗剪问题讲,通过分析得到了每一点上的抗剪强度T=c+fO,从而可以算出每一部分点上的局部安全系数。如果每一点上的K均大于1,整个计算体系在抗剪上当然是安全的。如果有个别点已达屈服,则由于在计算程序中已反映力材料性质,这些部位的T将自动等于Tf,表明这些部位已进入屈服状态。只要这些屈服区是孤立的、小范围的,而没有形成连贯的破坏面,那么,在指定荷载下该体系仍是稳定的。进入屈服状态的部位大小,野可以给出一个安全度的概念。反之,如果屈服的部位已经连成一个连贯的破坏面,甚至已求不出一个满足平衡要求的解答,就说明该体系在指定荷载下已不能维持稳定。(3) 如果要推算“安全系数”,首先要给出安全系数的定义。第一种方法,是将荷载乘以K并将K逐渐增大。每取一个K值就进行如上一次分析,直到K达到某临界值,出现了连贯性断裂面或已无法求得解答为止。这个临界值就是安全系数。显然,这样求出的K具有“超载系数”性质。第二种方法,是将材料的强度除以K,并用于计算中,逐渐增加K,使其强度逐渐降低,直至失稳。相应的K值就是安全系数。显然,这样求得的K具有“材料强度储备系数”的意义。上述方法虽很理想,但是近期内还不能实现。首先,要进行这种合理分析,必须对材料的特性有透彻、明确的了解。但目前度地基以及组成边坡的土、石这类的认识,还远远未达到这个地步。实际上这类材料具有很复杂的性质,还没有统一完善的理论可资遵循,也没有一个合适的数学模型可以采用。其次,及时在理论上以解决了材料的性能问题,但要具体分析问题,还须对建筑物和地基进行详尽的查勘,取得各种所需的数据和资料。尤其遂于天然地基和边坡,材料不均匀性很大,试验勘察的工作量也将十分巨大,必须改革勘察和成果整理分析的手段才能满足要求。计算中,对于计算域的选取,及边界条件的选用,也有待研究。对于中小型工程以及需要快速估算的情况,更不适应。总之,这种精确分析法尚未达到实用程度,而是一个发展方向。边坡稳定性问题的近似分析——极限平衡法由于精确合理的稳定性分析方法还在发展之中,目前我们几乎无例外的都采用近似方法来研究解决实际问题。这类方法可总称为“极限平衡分析法”,它们随着土力学的发展而出现和完善,是很自然的。将来即使出现更为精确合理的方法,它们仍然具有一定的实用价值。所以,对于这类方法加以归纳、分析和改进,是很有意义的。在极限平衡分析法中,我们采用以下一些基本概念:(1) 通过大量的实践、观测,辅以简单的理论分析,归纳出各种实际问题中可能出现的破裂面的形态。(2)决定破坏面的形式后,我们就拟定若干个可能的破坏面,分别进行核算。算出每个剪切面的安全系数,其中最低的安全系数,就接近于问题的解答。相应的剪切面野接近于最危险面(如果K小于1,这个面就是可能的破坏面)。在分析每个剪切面的安全系数时,我们用试算法进行。即假定一个K值,将材料的强度除以K值,作为计算中采用的强度。然后推算剪切面上的反力,这些反力既要和外荷载维持平衡,又要在剪切面上达到极限平衡状态。对于一个任意假定的K,这两种条件不能同时满足修改K值,知道这些条件得到满足。相应的K就是这个剪切面上的安全系数。总之,安全系数K需要通过试算才能确定。只有在最简单的情况线,K值才能直接算出。采用极限平衡法时,应注意以下几点:(1)这个分析是针对一个虚拟的情况进行的,即假想材料的强度都降低了K倍,沿剪切面处达到极限平衡状态。这种虚拟状态不等于现实情况(除非K等于1),我们只是利用这种状态来推求安全系数而已。(2) 因此,这种分析只能求出K值,以及在上述虚拟情况下的剪切面反力和某些内力,不能求出失稳以前真实的反力和内力,更不能求出变形。(3) 这种分析法只是一个粗糙的和综合性的分析,在求解中一定要采用许多假定。不同的假定会的到不同的成果。所以,并不存在一个“精确解”。尽管极限平衡分析法存在上述问题或缺陷,但是,由于精确分析尚未成熟,它仍然是目前广泛应用的方法,也是一个比较有效的手段。实践证明,这要我们透彻了解它的基本原理,谨慎的选择计算方法和数据,这种近似分析仍能提供合理的解答,使我们顺利解决复杂的问题,完成设计任务。以下是瑞典条分法、毕肖普法、传递系数法、詹布法的计算原理。1.2.1瑞典条分法基本计算原理及计算步骤(1)基本原理:当按滑动土体这一整体力矩平衡条件计算分析时,由于滑面上各点的斜率都不相同,自重等外荷载对弧面上的法向和切向作用分力不便按整体计算,因而整个滑动弧面上反力分布不清楚;另外,对于u>0的粘性土坡,特别是土坡为多层土层构成时,求W的大小和重心位置就比较麻烦。故在土坡稳定分析中,为便于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数,这即为条分法的基本原理。(2)基本假定瑞典法是针对平面(应变)问题,假定滑动面为圆弧面(从空间观点来看为圆柱面)。根据实际观察,对于比较均质的土质边坡,其滑裂面近似为圆弧面,因此瑞典法可以较好地解决这类问题。一般来说,条分法在实际计算中要作一定的假设,其具体假设如下:1、 假定问题为平面应变问题;2、 假定危险滑动面(即剪切面)为圆弧面,其位置及安全系数通过试算确定,即作若干个不同的圆弧,计算其相应的安全系数K其中最危险的(K值最低)圆弧以及相应的K值就是所求的答案;3、假定抗剪强度全部得到发挥,各圆弧上的K值,根据下式计算:k(其中M为剪切面上能提供的抗滑力矩,M为滑动力矩),所有这些力矩都以RT滑弧的圆心为矩心;4、 不考虑各分条之间的作用力。(3)计算步骤:设—土坡,地下水位很深,滑动土体所在土层孔隙水压力为0。条分法的计算步骤如下:
1)按一定比例尺画坡;2)确定圆心O和半径R,画弧AB;3) 分条并编号,为了计算方便,土条宽度可取滑弧半径的1/10,即b=0.1R,以圆心O为垂直线,向上顺序编为0、1、2、3、„„,向下顺序为-1、-2、-3、„„,这样,0条的滑动力矩为0,0条以上土条的滑动力矩为正值,0条以下滑动力矩为负值;4) 计算每个土条的自重W二rhb(h.为土条的平均高度)iii5) 分解滑动面上的两个分力Ni=Wicosai Ti=Wisinai式中:ai 法向应力与垂直线的夹角。6) 计算滑动力矩M=R工WisinaiTi=1式中:n:为土条数目。7) 计算抗滑力矩M=Rtg申工Wicosai+RCLRi=1式中:L为滑弧AB总长。8) 计算稳定安全系数(safetyfactor)。k=Mrtg申工Wicosk=Mri=1工Wisinaii=19)求最小安全系数,即找最危险的滑弧,重复2)~8),选不同的滑弧,求K1、K2、K3„„值,取最小者。该法计算简便,有长时间的使用经验,但工作量大,可用计算机进行,由于它忽略了条间力对Ni值的影响,可能低估安全系数(5〜20)%。毕肖普法边坡稳定性分析原理及计算步骤
瑞典条分法作为条分法计算中的最简单形式在工程中得到广泛应用,但实践表明,该方法计算出的安全系数偏低。实际上,土体是一种松散的聚合体,若不考虑土条之间的作用力,肯定无法满足土条的稳定,即土条无法自稳。随着边坡稳定分析理论与实践的发展,如何考虑土条间的作用力成为边坡稳定分析的发展方向之一,并形成了一些较为成熟并便于工程应用的分析方法,毕晓普条分法就是其中代表性的方法之一毕晓普在分析土坡稳定时认为土条之间的作用力不可忽略,土条之间的相互作用力包括土条两侧的竖向剪切力和土条之间的推力,并假设:1、滑动面为圆弧面;2、 滑动面上的剪切力做了具体规定;3、土条之间的剪切力忽略不计(简化毕晓普法)。作为考虑分条间相互影响的第一步,我们只考虑其间的水平作用力E,而取T=0,取出任一分条来看,作用的荷载有W、Q、U,待求的反力、内力为N、S、iiiii△E。由剪切面上的极限平衡要求根据式有:iCiLiNifiSi二+^-KKSi二CL+Si二CL+Nf=KK—△Ecosai+Qcosai+Wsinai
iii上式可改写为:Ei二-SeCai(cili+Nifi)+Qi+Witgai (1-3)K将所有分条的迭加,由于E^E=0,得ii工(工(cili+Nifi)secai
K-工Qi-工Witgai=0于是可得:工(cili+Nifi工(cili+Nifi)secai工Qi+^Witgai1-4)上式中的Ni尚未可知,我们可再引用分条上竖向力的平衡条件,得:cilisinaiNifisinaiNicosai+Uicosai+ + =WiKK解之得:
•r»» • •cifisinaiwi-Uicosai-Ni= .K (1-5)fisinaicosai+K代入(1-4)式,并整理之得:xi+(wi-厉)刃fa1-6)1+ —1-6)工Qi+工Witgai式中的□Xi是分条的宽度,□Xi=licosai,Ui=Ucosa。分析上两式,除K值外ii所有项均为已知,但K出现在等式两边,所以只能用试算或“试算一迭代”法解之。试算的步骤如下:根据问题性质,估计几个K值,例如估计K、K、K等三123值。其中K取小一些,而K取大一些,然后将这三个K值代入式子的右边,又13可以算出相应的三个k值,分别记为K1、K;、K3。我们将VK1、K1>、VK;、k2>、vK3、K3>三个点子绘在直角坐标纸上,连成光滑的曲线,并从原点作一45度的射线,与这条曲线交于一点,该点所相应的K值即为所求的安全系数(图3-5)。如要提高精度,可用这样求出的K值再次代入上式的右边,求出更精确的K。迭代法的步骤如下,先估计一个K值,代入上式右边,求出新的K值,再用这个K值代入上式右边,求出修正的K值。这样一直进行到满足精度要求为止。在很多情况下,收敛是迅速的。毕晓普法由于推导中只忽略了条间切向力,比瑞典条分法更为合理,与更精确的方法相比,可能低估安全系数(2〜7)%。传递系数法边坡稳定性分析原理及计算步骤图3—9中示一简单的边坡稳定问题。剪切面为一折线abc,其上有①②两个分块。设想分界面bb‘上不存在内力,各块独自站立在其底部剪切面上。我们分别计算这两个块体在底面上的反力N、S、N和S。,并分别求其安全系数:1122Kcl+fN Kcl+fNK=1_1,K= 2_21S 2S12设它们都大于1,就是说,在天然情况下,假定分界面上无内力,则两个块体都能自行稳定,但是它们的安全系数显然不相同(K<K)。12现在设想剪切面上的c和f逐步降低,则达到某一限度时,①号块首先不能稳定,但②号块尚有潜力,所以①号块必然要倒向②号块,以寻求它的支持。这样看来,即使在天然情况下分界面bb'上确无内力,在失稳过程中也必然会产生这些内力,直到所有分块的潜力都挖尽为止。设边坡的最终安全系数为K,将c及f值均除以K降低,则边坡即将失稳。此时,对第①块讲:cl丄fN11+ii
K二-K J〈1S1对第②块讲:cl丄fN21K=-K J〉1S2因KV1,即么+卑〈S。我们将S-4+型)称为这一块的不平衡下滑1 KK1 1KK力(或剩余推力),记为F。这意味着剪切面ab上不能抵抗全部下滑力S,11尚差一值F。这个F力可以由两个因素来平衡它,一个是在 bb'线上产生11则P的方向必平行于F,而且P=F,亦=0。换言之,我们假定每一分12 1 121 QY]界面上推力的方向平行于上一分块的底坡。具体计算时需用试算法,即假定一个K值,丛边坡顶部第一块算起,求出它的不平衡下滑力F,作为1、2两块间的推力P。再计算112第2块在原有荷载和P作用下的不平衡下滑力F,作为2、3块间的推力122P如此计算到第n块,如果该块在原有荷载以及推力P作用下,其安23 n-1,n全系数适为K(或即该块的不平衡下滑力F适为0),则即所求之K值。n如不满足这条件,可以根据F小于或大于0,增减原定的K值,重新n计算。一般我们可先取三个K值同时试算,其中一个K值取大些,一个取小些,最后求出相应的F值。将F对K绘成曲线,从上找出F=0时n n n的K值,即为所求之值。兹将具体计算公式推导如下。图3—10中示序号为i的一个分条,其上作用有垂直荷载缈W和水平荷载Q;(均指合成ii值)。右侧面承受上一分条的不平衡下滑力 P=F,倾角为a。左面TOC\o"1-5"\h\zi-1,i i-1 i-1上为本条的不平衡下滑力P =F,倾角为a,底部为法向反力N孔隙i,i+1i i i压力U及切向反力心c。将各力投影在底面上,用平衡方程写出:icl(Wcosa一U一Qsina)f、F—(Wsina+Qcosa)一(―f+iiii亍沪)+F•屮(3—10)iiii iK K i-1 i_式中屮=cos(a—tt)—isin(a—a)i-i—iK i—i式(3-10)中右边第一项表示本条的下滑力,第二项表示本条的抗滑力,第三项表示上一条传下来的不平衡下滑力的影响。对于第一分条,最后一项为0。用上式逐条计算,直到第n条,要求算出的F=0,由此确定K。n上述计算需以试算法解之,工作量稍大(至少需要计算三个K值,然后用曲线插补求出所需K值)。为了简化计算,可以采用以下较近似而迅捷的办法,即对于每一分条用下式计算其不平衡下滑力:不平衡下滑力二下滑力XK-抗滑力这样(3-10)就改为:F二(Wsina+Qcosa)—[cl+(Wcosa—U—Qsina)f]+F•屮i i ii i ii i iii ii i—1i—1而 屮=cos(tt—tt)—fsin(tt—tt)i—1 i—1ii i—1i求解K的条件仍是F=0。由此,可以得到一个K的一次方程,所以直接计算K而不n用试算。有时,其结果和更合理的做法比较相差也不大,而迅捷过之。但是这两种做法求出的K值之间并无一定谁大谁小的规律,而且在某些问题中,两者仍有较大差别。这个方法在我国铁道部门采用颇广,多用来核算滑坡稳定,被称为“不平衡推力传递法”屮称为推力传递系数,并编有一些数表可供查阅。i本法在分析中能顾及T力的作用,计算工作也不繁复(如用简化的推力传递法尤为方便)。存在的问题则为:由于P力的方向被硬性规定与上一分条底坡平行,所以有时会出现矛盾。因为,设某一分界面上的推力为P,其倾角为a,则将P分解为水平及垂直分力:E=Pcostt T=Psina但T不应该大于分界面上的容许抗剪力:T< +E•咖_ K式中c及0为分界面上的抗剪指标,H为分界面高度。但既然硬性规定P的倾角为a,则对于某些分条,上述条件就不能满足,甚至使T超过分界面土的极限抗剪力T二cH+E•tg0,就不合理了。在不少边坡稳定问题中,垂直分界面上的c及0值较大,另外,大部分剪切面的倾角也比较平缓,所以往往只在顶部一、二分块处可能破坏式(3-14)的要求,这样就不至对K值产生较大影响。所以,不平衡推力传递法还是有广大适用场合的。如果在边坡内无空隙压力及水平荷载作用,则可将式(3-10)和(3-12)中的Ui和Q置为0,以简化算式。i詹布法边坡稳定性分析计算原理及计算方法一九五四年瑞典人詹布(NilmarJanbu)就提出了“普遍条分法”的概念。一九五七年他再次在第四次国际土壤力学和基础工程会议期刊上发表了此法(我国建筑译丛:《建筑结构》1966年第2期载有摘译文)。1972年,詹布又在纪念卡萨格兰特教授的文集《堤坝工程》中发表了一篇比较详尽的论文“边坡稳定计算”,再一次阐述了他的方法。詹布法的主要特点在于:他并不假定竖直分界面上 T力的数值、或分布方式、或推力方向、或假定分界面上达到极限状态,而是假定分界面上推力作用点的位置。作了这个假定后,就可以利用力矩平衡的条件,把T表示为E的函数,等价于消去了T,使问题得解(图3—12)。实际上分界面上E力作用点在什么地方是不知道的。但它至少不会落在滑面以下或紧靠滑面处,而总是位在靠近分界面高度之半到下部三分点或四分点范围内。詹布氏认为:当c=0时,在大部分分条中,可取E的作用点在全高的下三分点处,如c>O,则在受压区、被动区或边坡的出口处,该点位置应稍高于三分点,而在主动区,则稍低一点,从而画出一条假定的推力线分布图。当E力的作用点假定后,我们取出第i号分条考察,以底部N作用点处为i矩心写下该分条的力矩平衡条件,可得(图3—13):1T-AX+—ATAX+E-Ah二AEh-QZi2iiiiii如果W对矩心有偏心,则可将其力矩计入在内。江上试移项,并除以AX,注意i竺二tga(a为推力线倾角),可得:TOC\o"1-5"\h\zAX ii_ h ZT+—AT=—E-tga+AE-—i—Q*—i iiAX iAXii各分条的a、AX、h、Z:均为已知量,所以如果已知分界面上的 E的分i i ii布,就可从上试由顶向底逐块算出T的分布。当在分界面上存在渗透压力U及U时,我们宜假定“接触压力”Ei,i-1 i,i+1的作用位置。在成立力矩平衡条件时,我们将U及U都作外力处i,i-1 i,i+1理。1-T-AX+—ATAX+EAh=AE-h+U-h"—U-h'—QZi2ii ii i,i+1i i,i—1iii
式中Q代表除渗透压力外的其他水平荷载,又上式,得:iT+1AT=-E-tga+(些)AE•丄+U丄一U丄一(坐)2i idXiiAX 口+1AX i,i-AXdXiiii对于第一块,W及N的作用线可能不通过宽度中心,则0点位置应稍移动,ii1各力臂均以该点为准。特别是AT的力臂,将小于-AX。2i如果分条很窄,则AT为高级微量,可以略去。另外等可写为(瓠,iU 1可令近似等于Ui,i+1AU 1可令近似等于Ui,i+1AX i,i-1AXiiiT二一E•tga+(咯)h-(dQ)ZidXiidXiidE式中(詁值之求法如下:将E沿X轴画成曲线,然后再i号分条中线处量其斜率而得。h为在i号分条中线处推力作用到剪切面中点垂距,(dQ)=2,这样,i dXiAXi每条分界线上的T值,可以直接从该线上的E值及分块上的AE、Q计算,而不必ii从顶部逐块按顺序计算。找到T和E之间的关系式后,则K的计算仍可利用式(3—6),只是W改为iW+AT,而且需迭代试算而已。将式(3-6)改写为sec2asec2a工[c -(W+AT-U)f]ii i iii1+纟tga KzWtgaii试算的程序如下:第一循环,令所有的T均为0,用第3—2节中方法,求出相应的K值,i即用试算法或迭代法解下式之中K:sec2a乙[cAX+(W-U)f]亠Ciiiiif1+Ktga.TOC\o"1-5"\h\z\o"CurrentDocument"工Q+工Wtgai ii求出K后,利用下式计算AE:i\o"CurrentDocument"1 sec2a —AE=(Q+Wtga)--•―- (cAX+(W-U)f)i iiiK f ii iii1+杯"累计AE,得个分界面上的E,这是第一循环的工作,也就是毕晓普法的计算。ii所以毕晓普解答是詹布法的第一近似值。第二循环,将从第一循环求出的 E和AE,代入式(3—23)、(3—24)或(3—25)中计算T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业文化融入的工作计划
- 2024epc建设工程承包合同十
- 2024年固定期限员工聘用合同模板版B版
- 二零二四年度厦门房屋租赁保险合同房屋及人身安全保险3篇
- 学期工作总结与反思计划
- 库存管理系统的实施效果评估计划
- 2024年度旅游景点开发合同(2024版)
- 人力资源外包合同三篇
- 2024专项净水设备保养合同版B版
- 二零二四年环保项目工程设计代理合同2篇
- 2024年新人教版七年级上册生物课件 第三章 微生物 第二节 细菌
- 《尘肺病治疗中国专家共识(2024年版)》解读
- 《无机化学》课件-第6章 分子结构和晶体结构
- 国际贸易代理合同三篇
- 药理学(浙江大学)智慧树知到答案2024年浙江大学
- 2024至2030年中国粪便菌群移植(FMT)行业市场预测与投资规划分析报告
- 市政道路工程技术标范本
- 江苏省宿迁市2024年中考数学试卷【附参考答案】
- 家电以旧换新风险评估与管理方案
- 结婚函调报告表
- 路面施工安全交底
评论
0/150
提交评论