《塑性加工模拟及自动控制》课件:郑江-esson 2-Continuous Media_第1页
《塑性加工模拟及自动控制》课件:郑江-esson 2-Continuous Media_第2页
《塑性加工模拟及自动控制》课件:郑江-esson 2-Continuous Media_第3页
《塑性加工模拟及自动控制》课件:郑江-esson 2-Continuous Media_第4页
《塑性加工模拟及自动控制》课件:郑江-esson 2-Continuous Media_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ContinuousMediaZhengJiangChongqingUniversityApril-13-2016Outline1Objectives2ConservationAndContinuityEquations3ConstitutiveEquations4BoundaryandInitialConditions1ObjectivesIntroducetheequationsofconservationofmass,solute,momentumandenergy.IntroducetheprincipalequationsformaterialsbehaviorDefinetheboundaryconditionsandinitialconditions.介绍质量守恒。。。。。。。。。介绍材料特性(材料力学行为)的主要公式解释边界条件和初始条件Theequationsofelectromagnetismwillnotbecoveredhere;wewilldiscussconservationofmass,ofmomentum,ofenergyandofsolute.Next,wewillcoverthemostimportantconstitutiveequationsformaterialbehaviorthatconnect,forexample:stresstostrainortovelocityindeformationorflowproblems;orenthalpyandheatfluxtotemperatureinheattransfercalculations;or,finally,thefluxofsolutetoconcentrationindiffusion.Thederivationoftheseequationswillbedoneintheperspectiveofsubsequentapplicationsthatmayinvolvetwodifferentscales.方程的推导将运用在两个尺度Atthemacroscopiclevel,theconservationandconstitutiveequationsallowmodeling,orevenoptimization,ofanindustrialprocessorsimulationofthebehaviorofasampleundergoingmechanicaltesting.在宏观尺度,守恒和本构方程允许建模,甚至优化of一个工业过程或行为的模拟of进行机械测试的样本Atthemicroscopicscale,theequationscanbeusedtodescribetheformationandevolutionofthemicrostructure(dendrites,spherulites,lamellae,orfibers,etc.),theinteractionbetweenafiberandthematrixincompositematerials,orthedeformationofacrystallatticearoundadislocation.在微观层面,方程可以用来描述微观结构的形成和演化(树突,球晶、薄片或纤维,等等),纤维和基质之间的相互作用in复合材料or一个位错周围的晶格的变形。HomogenizationRollingAnnealCasting1mEngineBlock1-10mmMacrostructureGrainsMacroporosityPropertiesHigh-cyclefatigueDuctility~100-500mMicrostructureEutecticPhaseMicroporosityIntermetallicPropertiesYieldstrengthTensilestrengthHigh-cyclefatigueLow-cyclefatigueThermalGrowthDuctility~10-100ÅAtomaticStructureCrystalStructureInterfaceStructurePropertiesThermalGrowthYieldstrength~3-100nmNanostructurePrecipitatePropertiesYieldstrengthThermalGrowthTensilestrengthLow-cyclefatigueDuctilityBasedonprocessingflowchartBasedonthemetallurgicallengthscalesFigure1Thedifferentscalesappearinginmaterialsscience.Aturbineblade(a),solidifiedinaceramicmold(investmentcasting),measuresafewdozencentimeters.Itiscomposedofgrainswhichareclearlyvisibleafterchemicaletching(scale:afewmillimeters),whichthemselvesaremadeupofdendriteswhicharespacedatafewdozentohundredsofmicrons(b).In(c)isshownaschematicatatomicscaleofthetransformationfromaliquidtoasolidforametalalloyduringtheformationofsuchabladebyprecisioncasting.1.2ConservationandContinuityEquationsFigure2Inthecontinuouscastingofaluminum(a),liquidmetalisinjectedfromanozzlethroughadistributionbagwhichfiltersoutinclusionsandoxideskindebris.Themetalcoolsoncontactwithamold,whichitselfiscooledbycirculatingwaterandwaterspraying.Solidmetalisextractedcontinuouslybyajackattachedtoabottomblock.Convectionintheliquid(indicatedbyarrows)cantransportgrowinggrainsofaluminuminthe‘mushy'region(b)Theenvironmentisnothomogeneousasitiscomposedofatleasttwophase,namelysolidandliquid.Thephenomenaoccursatmultiscale.Itcanbedescribedbyfourconservationequations(mass,momentum,energyandsolute)Thetypeofbehavior(elastic,plastic,viscous,etc.)andalsothevaluesofthermo-mechanicalpropertiesofthematerial(specificmass,viscosity,elasticmodulus,strain-hardeningcoefficient,thermalconductivity,etc.)enterintotheconstitutiveequationsforthedifferentphasesofthematerials.NoticeFigure3Afewareasofmaterialssciencewheremodelingplaysanimportantrole:polymerinjection(a),waterdiffusioninconcrete(b),deformationofatestspecimenundertension(c)1.2.1Definition“Nothingislost,nothingiscreated,everythingistransformed”-------

Lavoisier‘sprincipleFigure4Diagramofthecalculationdomainnanditsboundaryon(a).Theoutgoingnormalvectornandthetangentvectorτarealsoshown.Inthreedimensions(b),theretwotangentvectors.In(c),thevolumeelementΔVisshownwiththevelocitiesinthemediaateachfaceforthederivationoftheconservationequations.Ω的计算范围和边界ᵊΩ是图a,向外的法向量和切向量也如图示;在b中的三维图里,有两个切向量;c中,体积元素ΔV和它在介质中每个表面的速度一起显示出来,用于本构方程的推导。Inthefirst,calledtheLagrangian,analogoustotraditionalmechanics,wefollowthematerialelementthroughitsmovements(Forsoliddeformation);拉格朗日,类似于经典力学,我们遵从材料元素的运动Secondly,Eulerian,thereferenceframeisfixedandwewatchwhathappensatapointasafunctionoftime.(Forfluidmechanics)欧拉,修正了参考坐标系,并且我们能观察到随时间发生了什么Twopossibleapproachedtodescribeconservation(ofmass,energy,momentum,etc)AslongasthedomainΔVissmall,wecanmaketheassumptionthat,oneachface,thevaluesconsideredareconstant.

ΔV足够小时,我们能够假设,在每个面(所取的ΔV)上,值是恒定不变的。1.2.2

EquationofconservationofmassThissumincludesonlythetwocontributionsexpressingthatthemassvariationinsidetheelementmustbeduetotransferofmassacrossthefacesbythevelocityfieldv.

Thereisnodiffusion,norproductionofmass.Themassvariationinsidetheelementisgivenby:ThetotalquantityofmaterialleavingthevolumeΔVisgivenby:Theintegral(1.2)canbemanipulatedas:Thereisneitherlossnorcreationofmaterial:Stationarycase:Incompressible:1.2.3ConservationofsoluteAsforthemasssumderivedabove,atemporalvariationofthequantityinsolutioninthevolumeelementaswellasatransporttermcontainingthevelocityfieldwillappearinthesum.Twonewcontributionsneedtobetakenintoaccount.Thefirstisadiffusiveterm扩散项

associatedwithconcentrationgradients.Thesecondisasource

term(orsink)forchemicalreactions.isthenumberofmolesthatappearordisappearlocallyperunittimeandunitvolume.Weobtainthelocalequationfortheconservationofsolute.Formassspecificconcentration.1.2.4ConservationofmomentumFigure5Thesurfaceforces,T,andthegravityforce,ρg,actingonasmallvolumeelementΔV.Takingthesumofthecontributionstotheforcesactingonthesurfaceandonthevolume,weobtainforthecomponentx:Themomentumfluxinthexdirectionenteringorleavingthedomainisgivenby:Weobtainforthexcomponentoftheconservationofmomentum:Allthreedirectionalcomponentsofthemomentumcanbeexpressedasfollows:Forquasi-staticproblem:1.2.5Displacement,strain,strainrateOveraperiodoftime,displacementsofthematerialoccurduetotheappliedstressandvolumeforces.InLagrangiancoordinates,themovementofthematerialisdescribedbythesetoftrajectoriesofallthepointsinthematerial:,wherexoistheinitialpositionofapointattimet=0Thedisplacementu(xo,t)ofapointxoattimetisnaturallydefinedasthedifferencebetweenitspositionattimetanditsinitialposition:Figure7Forgingofasolidtoobtainacomplexform(a)andtwo-dimensionalrepresentationofthedisplacements(b)forsuchaprocessTosimplifytheexpression,itisnecessaryatthisstagetoswitchtothecoordinatenotation(x1,x2,x3)inplaceof(x,y,z).WhereistheKroneckerdeltafunctionThisequationdefinesthegradienttensorofthetransformationF=I+Gradu.Theresultisasymmetricsecondordertensor,a3x3matrixcalledtherightCauchy-Greenstraintensor,orCauchy'sdilatationtensor,Returbingtothe(x,y,z)coordinates,thesymmetricstraintensoriswritten:Figure8Illustrationofthedifferentelementarystraincomponentsforaparallelepiped.Wheredesignatesthevelocityvectorassociatedwiththedisplacementvectoru.ThisvelocityissimplythatofapointinLagrangiancoordinates:EngineeringstrainThe

engineeringnormalstrain

or

engineeringextensionalstrain

or

nominalstrain

e

ofamateriallineelementorfiberaxiallyloadedisexpressedasthechangeinlengthΔL

perunitoftheoriginallength

L

ofthelineelementorfibers.Thenormalstrainispositiveifthematerialfibersarestretchedandnegativeiftheyarecompressed.Thus,wehave

eisthe

engineeringnormalstrain,

Listheoriginallengthofthefiberandislisthefinallengthofthefiber.

StretchstrainTheextensionratioisapproximatelyrelatedtotheengineeringstrainbyThisequationimpliesthatthenormalstrainiszero,sothatthereisnodeformationwhenthestretchisequaltounity.TheextensionratioisapproximatelyrelatedtotheengineeringstrainbyThe

truestrain

ε,(althoughnothingisparticularly"true"aboutitcomparedtoothervaliddefinitionsofstrain).Consideringanincrementalstrain.thetruestrainisobtainedbyintegratingthisincrementalstrain:where

e

istheengineeringstrain.Thetruestrainprovidesthecorrectmeasureofthefinalstrainwhendeformationtakesplaceinaseriesofincrements,takingintoaccounttheinfluenceofthestrainpath.TruestrainTheGreenstrainisdefinedas:GreenstrainAlmansistrainTheAlmansistrainisdefinedas:NormalstrainConsideratwo-dimensionalinfinitesimalrectangularmaterialelementwithdimensions

,whichafterdeformation,takestheformofarhombus.FromthegeometryoftheadjacentfigurewehaveForverysmalldisplacementgradientsthesquaresofthederivativesarenegligibleandwehaveThenormalstraininthex

directionoftherectangularelementisdefinedbySimilarly,thenormalstrainintheydirection,andzdirectionbecomes

ShearstrainTheengineeringshearstrain()isdefinedasthechangeinanglebetweenlinesand,thereforeFromthegeometryofthefigure,wehaveForsmalldisplacementgradientswehaveForsmallrotations,i.e.αandβare,wehavetanα≈

α,tanβ

β,thereforeByinterchangingxandyanduxanduy,itcanbeshownthat,similarly,forthey-zplaneandz-xplane,wehaveGeneralthree-dimensionalbodywithan8-nodethree-dimensionalelement1.2.6VirtualpowerThebodyislocatedinthefixed(stationary)coordinatesystemX,Y,ZConsideringthebodysurfacearea,thebodyissupportedontheareaSuwithprescribeddisplacementsUSuandissubjectedtosurfaceforcesfsf(forcesperunitsurfacearea)onthesurfaceareaSf.ThebodyissubjectedtoexternallyappliedbodyforcesfB(forcesperunitvolume)andconcentratedloadsRc(whereidenotesthepointofloadapplication).WeintroducetheforcesRcasseparatequantities,althougheachsuchforcecouldalsobeconsideredsurfacetractionsfsfoveraverysmallarea.Ingeneral,theexternallyappliedforceshavethreecomponentscorrespondingtotheX,Y,Zcoordinateaxes:U=USuonthesurfacearea.ThestrainscorrespondingtoUareCisthestress-strainmaterialmatrixandthevector

denotesgiveninitialstresses1.2.7ConservationofEnergyIngeneral,thefirstlawofthermodynamicstellsusthatthevariationoftotalenergyofadomainunderconsiderationisduetothemechanicalpoweroftheexternalforces,Pmech,andthecaloricpowerapplied,PcalThetotalenergyiscomposedofthekineticenergy,Ebandtheinternalenergy,Ej.Puttingallthetermstogether:Thesumofthefirstthreetermsontherighthandsideoftheequationisthedeformationpower.1.2.8UnifiedformoftheconservationequationsTheconservationequationsderivedabovearesimilarinthattheyallcontainatemporalvariationterm,anadvectivetransportterm,andsomehaveadiffusiontermandasourceterm.Theycanbereducedtoasinglegeneralequation:1.3ConstitutiveEquationsIn

physics

and

engineering,a

constitutiveequation

or

constitutiverelation

isarelationbetweentwophysicalquantities.1.3.1Constitutiveequationsformass1.3.2ConstitutiveequationsforsoluteFigure9DiagramofdiffusionaccordingtoFick'sfirstlawrelatingthechemicalfluxtotheconcentrationgradientThefluxcangenerallybeexpressedintermsofthegradientoftheconcentrationbyFick’sfirstlaw:whereDjisthediffusioncoefficient.1.3.3ConstitutiveequationsforEnergyConsideringthepressureconstant,whichisagoodapproximationforcondensedmatter,thespecificenthalpyofaphase,H,isgivenby:whereKisthethermalconductivityofthematerial.Thediffusiveheatflux,jT,isgivenbyanequationsimilartoFick'sfirstlaw(Fourier’slaw):whereEistheelectricalfield(Voltage),jEtheelectricalcurrentdensity,andρEelectricalresistivity.Inthecaseofchemicalreactions,theheatsourcetermbecomesasumoverallthechemicalspecies:Thesourcetermintroducedbyaphasetransformationwillbetreatedindetailinchapter5.Strictlyspeaking,thelatentheatperunitmass,Lα/β,associatedwithaphasetransformationα→β,isnotavolumetricsourcetermasitisproducedatthemovinginterfaceα/β.1.3.4ConstitutiveequationsforMaterials:quasi-staticcaseInthesimplestcase,thatoflinearelasticity,wetrytorelatethestresstensorσtothestrainε(x,y,z).Beingsymmetric,(σij=σjiandεij=εji),thesetwotensorsonlyhavesixindependentcomponents.Inthecoordinates(x,y,z),Hooke’slawrelatingthesixcomponentstakestheform:Thematrix[Del]istheelasticitymatrix.whereEistheelasticmodulusandvpisPoisson’scoefficient.Assumingthatthematerialisstretchedorcompressedalongtheaxialdirection:Acubewithsidesoflength

L

ofanisotropiclinearlyelasticmaterialsubjecttotensionalongthexaxis,withaPoisson‘sratioofν.Thegreencubeisunstrained,theredisexpandedinthe

x

directionbyduetotension,andcontractedinthe

y

and

z

directionsby∆Lduetotension,andcontractedinthe

y

and

z

directionsby

∆L’.Therelativechangeofvolume

ΔV/V

ofacubeduetothestretchofthematerialcannowbecalculated.UsingV=L3andV+ΔV=(L+ΔL)(L-ΔL’)2(x+Δx)1-2ν

=x1-2ν+(1-2ν)·x-2ν

·Δx-

2ν(1-2ν)·x-2ν-1

·Δx2………

Theproblemencounteredinmaterialsscienceisthatmostofthetimethematerialdoesnothavelinearelasticbehavior;rather,itcanundergoplasticstrain,εpl.Inadditiontothiscomponent,othersofathermalnature,εth,orassociatedwithphasetransformations,εtr(volumechanges),cancontributetothelocaltotalstrain,ε,givenby(1.36).Ingeneral,onehas:1.4BoundaryandInitialConditions1.4.1GeneralitiesInanonstationaryproblem,thefirsttermoftheequationrequiresthespecificationofthevaluesofthefield(x,t=0)ateverypointinthedomainΩattimet=0.Thisistheinitialcondition.Inthesameequation,therearetwointegralsontheboundaryofthedomain:thefirstinvolvesthenormalvelocitycomponent,vn=v·n,andcorrespondstothetransportofthequantityacrossthesurface,whereasthesecondisrelatedtothefluxenteringorleavingthedomainatthesurfacebydiffusion,j=j·n.n.Itcanbeseenthatitwillbenecessarytospecifythesetermsatthesurfacetodeterminewhathappensintheinterior.Theseareboundaryconditions.Theboundaryconditionsfordiffusiveproblemsaredividedintotwotypes:I.Anaturalconditionexpressesdirectlythevalueofjontheboundary.Threecasesofthistypearegenerallyconsidered:I.1ThehomogeneousNeumannconditionisanullflux:I.2TheNeumannconditioncorrespondstoanonzerofluxgivenontheboundary:I.3TheCauchyormixedconditionconsistsofalinearrelationbetweenthefluxandthevalueofthevariableitself:II.AnessentialconditionoraDirichletconditionconsistsofspecifyingthevariabledirectlyratherthanthediffusiveflux,Thebaroverthevariableontherightindicatesthatitisanimposedvalue.Thisvaluecanbeafunctionofpositionandtime.1.4.2SolutetransferAnessentialconditionmeansspecifyingthevalueofconcentrationofsoluteionapartofthedomainboundary.ThenaturalhomogeneousNeumanncondition,AnaturalnonhomogeneousNeumannconditioncorrespondstoafixed,nonzero,solutefluxatthesurface.Amixed,Cauchy,boundaryconditioncanbeexpressedintheform:whereαisachemicaltransfercoefficientbetweenthesur

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论