




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DataMining:DataLectureNotesforChapter2IntroductiontoDataMiningbyTan,Steinbach,KumarWhatisData?CollectionofdataobjectsandtheirattributesAnattributeisapropertyorcharacteristicofanobjectExamples:eyecolorofaperson,temperature,etc.Attributeisalsoknownasvariable,field,characteristic,orfeatureAcollectionofattributesdescribeanobjectObjectisalsoknownasrecord,point,case,sample,entity,orinstanceAttributesObjectsAttributeValuesAttributevaluesarenumbersorsymbolsassignedtoanattributeDistinctionbetweenattributesandattributevaluesSameattributecanbemappedtodifferentattributevaluesExample:heightcanbemeasuredinfeetormetersDifferentattributescanbemappedtothesamesetofvaluesExample:AttributevaluesforIDandageareintegersButpropertiesofattributevaluescanbedifferentIDhasnolimitbutagehasamaximumandminimumvalueMeasurementofLengthThewayyoumeasureanattributeissomewhatmaynotmatchtheattributesproperties.TypesofAttributesTherearedifferenttypesofattributesNominalExamples:IDnumbers,eyecolor,zipcodesOrdinalExamples:rankings(e.g.,tasteofpotatochipsonascalefrom1-10),grades,heightin{tall,medium,short}IntervalExamples:calendardates,temperaturesinCelsiusorFahrenheit.RatioExamples:temperatureinKelvin,length,time,countsPropertiesofAttributeValuesThetypeofanattributedependsonwhichofthefollowingpropertiesitpossesses:Distinctness: = Order: <> Addition: +- Multiplication: */Nominalattribute:distinctnessOrdinalattribute:distinctness&orderIntervalattribute:distinctness,order&additionRatioattribute:all4propertiesAttributeTypeDescriptionExamplesOperationsNominalThevaluesofanominalattributearejustdifferentnames,i.e.,nominalattributesprovideonlyenoughinformationtodistinguishoneobjectfromanother.(=,)zipcodes,employeeIDnumbers,eyecolor,sex:{male,female}mode,entropy,contingencycorrelation,2testOrdinalThevaluesofanordinalattributeprovideenoughinformationtoorderobjects.(<,>)hardnessofminerals,{good,better,best},
grades,streetnumbersmedian,percentiles,rankcorrelation,runtests,signtestsIntervalForintervalattributes,thedifferencesbetweenvaluesaremeaningful,i.e.,aunitofmeasurementexists.
(+,-)calendardates,temperatureinCelsiusorFahrenheitmean,standarddeviation,Pearson'scorrelation,tandFtestsRatioForratiovariables,bothdifferencesandratiosaremeaningful.(*,/)temperatureinKelvin,monetaryquantities,counts,age,mass,length,electricalcurrentgeometricmean,harmonicmean,percentvariationAttributeLevelTransformationCommentsNominalAnypermutationofvaluesIfallemployeeIDnumberswerereassigned,woulditmakeanydifference?OrdinalAnorderpreservingchangeofvalues,i.e.,
new_value=f(old_value)
wherefisamonotonicfunction.Anattributeencompassingthenotionofgood,betterbestcanberepresentedequallywellbythevalues{1,2,3}orby{0.5,1,10}.Intervalnew_value=a*old_value+bwhereaandbareconstantsThus,theFahrenheitandCelsiustemperaturescalesdifferintermsofwheretheirzerovalueisandthesizeofaunit(degree).Rationew_value=a*old_valueLengthcanbemeasuredinmetersorfeet.DiscreteandContinuousAttributesDiscreteAttributeHasonlyafiniteorcountablyinfinitesetofvaluesExamples:zipcodes,counts,orthesetofwordsinacollectionofdocumentsOftenrepresentedasintegervariables.Note:binaryattributesareaspecialcaseofdiscreteattributesContinuousAttributeHasrealnumbersasattributevaluesExamples:temperature,height,orweight.Practically,realvaluescanonlybemeasuredandrepresentedusingafinitenumberofdigits.Continuousattributesaretypicallyrepresentedasfloating-pointvariables.TypesofdatasetsRecordDataMatrixDocumentDataTransactionDataGraphWorldWideWebMolecularStructuresOrderedSpatialDataTemporalDataSequentialDataGeneticSequenceDataImportantCharacteristicsofStructuredDataDimensionalityCurseofDimensionalitySparsity
OnlypresencecountsResolutionPatternsdependonthescaleRecordDataDatathatconsistsofacollectionofrecords,eachofwhichconsistsofafixedsetofattributesDataMatrixIfdataobjectshavethesamefixedsetofnumericattributes,thenthedataobjectscanbethoughtofaspointsinamulti-dimensionalspace,whereeachdimensionrepresentsadistinctattributeSuchdatasetcanberepresentedbyanmbynmatrix,wheretherearemrows,oneforeachobject,andncolumns,oneforeachattributeDocumentDataEachdocumentbecomesa`term'vector,eachtermisacomponent(attribute)ofthevector,thevalueofeachcomponentisthenumberoftimesthecorrespondingtermoccursinthedocument.TransactionDataAspecialtypeofrecorddata,whereeachrecord(transaction)involvesasetofitems.Forexample,consideragrocerystore.Thesetofproductspurchasedbyacustomerduringoneshoppingtripconstituteatransaction,whiletheindividualproductsthatwerepurchasedaretheitems.GraphDataExamples:GenericgraphandHTMLLinksChemicalDataBenzeneMolecule:C6H6OrderedDataSequencesoftransactionsAnelementofthesequenceItems/EventsOrderedDataGenomicsequencedataOrderedDataSpatio-TemporalDataAverageMonthlyTemperatureoflandandoceanDataQualityWhatkindsofdataqualityproblems?Howcanwedetectproblemswiththedata?Whatcanwedoabouttheseproblems?Examplesofdataqualityproblems:NoiseandoutliersmissingvaluesduplicatedataNoiseNoisereferstomodificationoforiginalvaluesExamples:distortionofaperson’svoicewhentalkingonapoorphoneand“snow”ontelevisionscreenTwoSineWavesTwoSineWaves+NoiseOutliersOutliersaredataobjectswithcharacteristicsthatareconsiderablydifferentthanmostoftheotherdataobjectsinthedatasetMissingValuesReasonsformissingvaluesInformationisnotcollected
(e.g.,peopledeclinetogivetheirageandweight)Attributesmaynotbeapplicabletoallcases
(e.g.,annualincomeisnotapplicabletochildren)HandlingmissingvaluesEliminateDataObjectsEstimateMissingValuesIgnoretheMissingValueDuringAnalysisReplacewithallpossiblevalues(weightedbytheirprobabilities)DuplicateDataDatasetmayincludedataobjectsthatareduplicates,oralmostduplicatesofoneanotherMajorissuewhenmergingdatafromheterogeoussourcesExamples:SamepersonwithmultipleemailaddressesDatacleaningProcessofdealingwithduplicatedataissuesDataPreprocessingAggregationSamplingDimensionalityReductionFeaturesubsetselectionFeaturecreationDiscretizationandBinarizationAttributeTransformationAggregationCombiningtwoormoreattributes(orobjects)intoasingleattribute(orobject)PurposeDatareductionReducethenumberofattributesorobjectsChangeofscaleCitiesaggregatedintoregions,states,countries,etcMore“stable”dataAggregateddatatendstohavelessvariabilityAggregationStandardDeviationofAverageMonthlyPrecipitationStandardDeviationofAverageYearlyPrecipitationVariationofPrecipitationinAustraliaSamplingSamplingisthemaintechniqueemployedfordataselection.Itisoftenusedforboththepreliminaryinvestigationofthedataandthefinaldataanalysis.
Statisticianssamplebecauseobtainingtheentiresetofdataofinterestistooexpensiveortimeconsuming.
Samplingisusedindataminingbecauseprocessingtheentiresetofdataofinterestistooexpensiveortimeconsuming.Sampling…Thekeyprincipleforeffectivesamplingisthefollowing:usingasamplewillworkalmostaswellasusingtheentiredatasets,ifthesampleisrepresentative
Asampleisrepresentativeifithasapproximatelythesameproperty(ofinterest)astheoriginalsetofdataTypesofSamplingSimpleRandomSamplingThereisanequalprobabilityofselectinganyparticularitemSamplingwithoutreplacementAseachitemisselected,itisremovedfromthepopulationSamplingwithreplacementObjectsarenotremovedfromthepopulationastheyareselectedforthesample.Insamplingwithreplacement,thesameobjectcanbepickedupmorethanonceStratifiedsamplingSplitthedataintoseveralpartitions;thendrawrandomsamplesfromeachpartitionSampleSize
8000points 2000Points 500PointsSampleSizeWhatsamplesizeisnecessarytogetatleastoneobjectfromeachof10groups.CurseofDimensionalityWhendimensionalityincreases,databecomesincreasinglysparseinthespacethatitoccupiesDefinitionsofdensityanddistancebetweenpoints,whichiscriticalforclusteringandoutlierdetection,becomelessmeaningfulRandomlygenerate500pointsComputedifferencebetweenmaxandmindistancebetweenanypairofpointsDimensionalityReductionPurpose:AvoidcurseofdimensionalityReduceamountoftimeandmemoryrequiredbydataminingalgorithmsAllowdatatobemoreeasilyvisualizedMayhelptoeliminateirrelevantfeaturesorreducenoiseTechniquesPrincipleComponentAnalysisSingularValueDecompositionOthers:supervisedandnon-lineartechniquesDimensionalityReduction:PCAGoalistofindaprojectionthatcapturesthelargestamountofvariationindatax2x1eDimensionalityReduction:PCAFindtheeigenvectorsofthecovariancematrixTheeigenvectorsdefinethenewspacex2x1eDimensionalityReduction:ISOMAPConstructaneighbourhoodgraphForeachpairofpointsinthegraph,computetheshortestpathdistances–geodesicdistancesBy:Tenenbaum,deSilva,Langford(2000)DimensionalityReduction:PCAFeatureSubsetSelectionAnotherwaytoreducedimensionalityofdataRedundantfeaturesduplicatemuchoralloftheinformationcontainedinoneormoreotherattributesExample:purchasepriceofaproductandtheamountofsalestaxpaidIrrelevantfeaturescontainnoinformationthatisusefulforthedataminingtaskathandExample:students'IDisoftenirrelevanttothetaskofpredictingstudents'GPAFeatureSubsetSelectionTechniques:Brute-forceapproch:TryallpossiblefeaturesubsetsasinputtodataminingalgorithmEmbeddedapproaches:FeatureselectionoccursnaturallyaspartofthedataminingalgorithmFilterapproaches:FeaturesareselectedbeforedataminingalgorithmisrunWrapperapproaches:UsethedataminingalgorithmasablackboxtofindbestsubsetofattributesFeatureCreationCreatenewattributesthatcancapturetheimportantinformationinadatasetmuchmoreefficientlythantheoriginalattributesThreegeneralmethodologies:FeatureExtractiondomain-specificMappingDatatoNewSpaceFeatureConstructioncombiningfeaturesMappingDatatoaNewSpaceTwoSineWavesTwoSineWaves+NoiseFrequencyFouriertransformWavelettransformDiscretizationUsingClassLabelsEntropybasedapproach3categoriesforbothxandy5categoriesforbothxandyDiscretizationWithoutUsingClassLabelsDataEqualintervalwidthEqualfrequencyK-meansAttributeTransformationAfunctionthatmapstheentiresetofvaluesofagivenattributetoanewsetofreplacementvaluessuchthateacholdvaluecanbeidentifiedwithoneofthenewvaluesSimplefunctions:xk,log(x),ex,|x|StandardizationandNormalizationSimilarityandDissimilaritySimilarityNumericalmeasureofhowaliketwodataobjectsare.Ishigherwhenobjectsaremorealike.Oftenfallsintherange[0,1]DissimilarityNumericalmeasureofhowdifferentaretwodataobjectsLowerwhenobjectsaremorealikeMinimumdissimilarityisoften0UpperlimitvariesProximityreferstoasimilarityordissimilaritySimilarity/DissimilarityforSimpleAttributespandqaretheattributevaluesfortwodataobjects.EuclideanDistanceEuclideanDistance
Wherenisthenumberofdimensions(attributes)andpkandqkare,respectively,thekthattributes(components)ordataobjectspandq.Standardizationisnecessary,ifscalesdiffer.EuclideanDistanceDistanceMatrixMinkowskiDistanceMinkowskiDistanceisageneralizationofEuclideanDistance
Whererisaparameter,nisthenumberofdimensions(attributes)andpkandqkare,respectively,thekthattributes(components)ordataobjectspandq.MinkowskiDistance:Examplesr=1.Cityblock(Manhattan,taxicab,L1norm)distance.AcommonexampleofthisistheHammingdistance,whichisjustthenumberofbitsthataredifferentbetweentwobinaryvectorsr=2.Euclideandistancer
.“supremum”(Lmax
norm,L
norm)distance.ThisisthemaximumdifferencebetweenanycomponentofthevectorsDonotconfuserwithn,i.e.,allthesedistancesaredefinedforallnumbersofdimensions.MinkowskiDistanceDistanceMatrixMahalanobisDistanceForredpoints,theEuclideandistanceis14.7,Mahalanobisdistanceis6.isthecovariancematrixoftheinputdataXMahalanobisDistanceCovarianceMatrix:BACA:(0.5,0.5)B:(0,1)C:(1.5,1.5)Mahal(A,B)=5Mahal(A,C)=4CommonPropertiesofaDistanceDistances,suchastheEuclideandistance,havesomewellknownproperties.d(p,q)0forallpandqandd(p,q)=0onlyif
p
=q.(Positivedefiniteness)d(p,q)=d(q,p)forallpandq.(Symmetry)d(p,r)d(p,q)+d(q,r)forallpointsp,q,andr.
(TriangleInequality) whered(p,q)isthedistance(dissimilarity)betweenpoints(dataobjects),pandq.AdistancethatsatisfiesthesepropertiesisametricCommonPropertiesofaSimilaritySimilarities,alsohavesomewellknownproperties.s(p,q)=1(ormaximumsimilarity)onlyifp
=q.
s(p,q)=s(q,p)forallpandq.(Symmetry)
wheres(p,q)isthesimilaritybetweenpoints(dataobjects),pandq.SimilarityBetweenBinaryVectorsCommonsituationisthatobjects,pandq,haveonlybinaryattributesComputesimilaritiesusingthefollowingquantities M01
=thenumberofattributeswherepwas0andqwas1 M10=thenumberofattributeswherepwas1andqwas0 M00
=thenumberofattributeswherepwas0andqwas0 M11
=thenumberofattributeswherepwas1andqwas1SimpleMatchingandJaccardCoefficients SMC=numberofmatches/numberofattributes =(M11+M00)/(M01+M10+M11+M00) J=numberof11matches/numberofnot-both-zeroattributesvalues =(M11)/(M01+M10+M11)SMCversusJaccard:Examplep=1000000000
q=0000001001
M01
=2(thenumberofattributeswherepwas0andqwas1)M10
=1(thenumberofattributeswherepwas1andqwas0)M00
=7(thenumberofattributeswherepwas0andqwas0)M11
=0(thenumberofattributeswherepwas1andqwas1)
SMC=(M11+M00)/(M01+M10+M11+M00)=(0+7)/(2+1+0+7)=0.7
J=(M11)/(M01+M10+M11)=0/(2+1+0)=0
CosineSimilarityIf
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编人教版三年级语文下册《习作:身边那些有特点的人》公开课教学课件
- 能否取消拍卖合同协议书
- 物业合同续签申请协议书
- 电力器材回收合同协议书
- 材料被盗调解协议书模板
- 碎石机加工样本合同协议
- 门店客户股东合伙协议书
- 高档小区房屋置换协议书
- 物业旧物回收合同协议书
- 聘用兼职人员协议书范本
- JBT 5300-2024 工业用阀门材料 选用指南(正式版)
- 2024年苏州历史文化名城建设集团有限公司招聘笔试冲刺题(带答案解析)
- 汽车底盘DFMEA-减震器总成
- (2024年)诊疗规范培训课件
- 2024年广东汕头市投资控股集团有限公司招聘笔试参考题库含答案解析
- 盐城市2022-2023学年七年级下学期数学期末试卷(含答案解析)
- 新版译林英语五年级上第一二单元测试含听力文本和答案
- 膝关节退行性变的护理
- 急性肺栓塞课件
- 洁净区臭氧消毒效果验证方案
- 停车场数据分析与管理
评论
0/150
提交评论