版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IntroductiontoAlgorithms刘东林
华东理工大学信息学院计算机系Lecture05StructuresBinarySearchTreesReview:DynamicSetsfocusondatastructuresratherthanstraightalgorithmsInparticular,structuresfordynamicsetsElementshaveakeyandsatellitedataDynamicsetssupportqueriessuchas:Search(S,k),Minimum(S),Maximum(S),Successor(S,x),Predecessor(S,x)Theymayalsosupportmodifyingoperationslike:Insert(S,x),Delete(S,x)Review:BinarySearchTreesBinarySearchTrees(BSTs)areanimportantdatastructurefordynamicsetsInadditiontosatellitedata,elementshave:key:anidentifyingfieldinducingatotalorderingleft:pointertoaleftchild(maybeNULL)right:pointertoarightchild(maybeNULL)p:pointertoaparentnode(NULLforroot)Review:BinarySearchTreesBSTproperty:
key[leftSubtree(x)]key[x]key[rightSubtree(x)]Example:FBHKDAInorderTreeWalkWhatdoesthefollowingcodedo?TreeWalk(x)TreeWalk(left[x]);print(x);TreeWalk(right[x]);A:printselementsinsorted(increasing)orderThisiscalledaninordertreewalkPreordertreewalk:printroot,thenleft,thenrightPostordertreewalk:printleft,thenright,thenrootInorderTreeWalkExample:Howlongwillatreewalktake?ProvethatinorderwalkprintsinmonotonicallyincreasingorderFBHKDAOperationsonBSTs:SearchGivenakeyandapointertoanode,returnsanelementwiththatkeyorNULL:TreeSearch(x,k)if(x=NULLork=key[x])returnx;if(k<key[x])returnTreeSearch(left[x],k);elsereturnTreeSearch(right[x],k);BSTSearch:ExampleSearchforDandC:FBHKDAOperationsonBSTs:SearchHere’sanotherfunctionthatdoesthesame:TreeSearch(x,k)while(x!=NULLandk!=key[x])if(k<key[x])x=left[x];elsex=right[x];returnx;Whichofthesetwofunctionsismoreefficient?OperationsofBSTs:InsertAddsanelementxtothetreesothatthebinarysearchtreepropertycontinuestoholdThebasicalgorithmLikethesearchprocedureaboveInsertxinplaceofNULLUsea“trailingpointer”tokeeptrackofwhereyoucamefrom(likeinsertingintosinglylinkedlist)BSTInsert:ExampleExample:InsertCFBHKDACBSTSearch/Insert:RunningTimeWhatistherunningtimeofTreeSearch()orTreeInsert()?A:O(h),whereh=heightoftreeWhatistheheightofabinarysearchtree?A:worstcase:h=O(n)whentreeisjustalinearstringofleftorrightchildrenWe’llkeepallanalysisintermsofhfornowLaterwe’llseehowtomaintainh=O(lgn)SortingWithBinarySearchTreesInformalcodeforsortingarrayAoflengthn:BSTSort(A)fori=1tonTreeInsert(A[i]);InorderTreeWalk(root);Arguethatthisis(nlgn)WhatwillbetherunningtimeintheWorstcase?Averagecase?(hint:remindyouofanything?)SortingWithBSTsAveragecaseanalysisIt’saformofquicksort!fori=1tonTreeInsert(A[i]);InorderTreeWalk(root);31826755712867526753182657SortingwithBSTsSamepartitionsaredoneaswithquicksort,butinadifferentorderInpreviousexampleEverythingwascomparedto3onceThenthoseitems<3werecomparedto1onceEtc.Samecomparisonsasquicksort,differentorder!Example:considerinserting5SortingwithBSTsSinceruntimeisproportionaltothenumberofcomparisons,sametimeasquicksort:O(nlgn)Whichdoyouthinkisbetter,quicksortorBSTsort?Why?SortingwithBSTsSinceruntimeisproportionaltothenumberofcomparisons,sametimeasquicksort:O(nlgn)Whichdoyouthinkisbetter,quicksortorBSTSort?Why?A:quicksortBetterconstantsSortsinplaceDoesn’tneedtobuilddatastructureMoreBSTOperationsBSTsaregoodformorethansorting.Forexample,canimplementapriorityqueueWhatoperationsmustapriorityqueuehave?InsertMinimumExtract-MinBSTOperations:MinimumHowcanweimplementaMinimum()query?Whatistherunningtime?BSTOperations:SuccessorFordeletion,wewillneedaSuccessor()operationDrawFig13.2Whatisthesuccessorofnode3?Node15?Node13?Whatarethegeneralrulesforfindingthesuccessorofnodex?(hint:twocases)BSTOperations:SuccessorTwocases:xhasarightsubtree:successorisminimumnodeinrightsubtreexhasnorightsubtree:successorisfirstancestorofxwhoseleftchildisalsoancestorofxIntuition:Aslongasyoumovetotheleftupthetree,you’revisitingsmallernodes.Predecessor:similaralgorithmBSTOperations:DeleteDeletionisabittricky3cases:xhasnochildren:Removexxhasonechild:Spliceoutxxhastwochildren:SwapxwithsuccessorPerformcase1or2todeleteitFBHKDACExample:deleteK
orHorBBSTOperations:DeleteWhywillcase2alwaysgotocase0orcase1?A:becausewhenxhas2children,itssuccessoristheminimuminitsrightsubtreeCouldweswapxwithpredecessorinsteadofsuccessor?A:yes.Woulditbeagoodidea?A:mightbegoodtoalternateTheEndUpnext:guaranteeingaO(lgn)heighttreeRed-BlackTreesRed-BlackTreesRed-blacktrees:BinarysearchtreesaugmentedwithnodecolorOperationsdesignedtoguaranteethattheheight
h=O(lgn)Wedescribedthepropertiesofred-blacktreesWeprovedthattheseguaranteeh=O(lgn)Next:describeoperationsonred-blacktreesRed-BlackPropertiesThered-blackproperties:1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblackNote:thismeansevery“real”nodehas2children3. Ifanodeisred,bothchildrenareblackNote:can’thave2consecutiveredsonapath4. Everypathfromnodetodescendentleafcontainsthesamenumberofblacknodes5. TherootisalwaysblackBlack-Heightblack-height:#blacknodesonpathtoleafWhatistheminimumblack-heightofanodewithheighth?A:aheight-hnodehasblack-heighth/2Theorem:Ared-blacktreewithninternalnodeshasheighth2lg(n+1)Provedby(whatelse?)inductionProvingHeightBoundThusattherootofthered-blacktree:n 2bh(root)-1 n 2h/2-1 lg(n+1)h/2 h2lg(n+1) Thush=O(lgn) RBTrees:Worst-CaseTimeSowe’veprovedthatared-blacktreehasO(lgn)heightCorollary:TheseoperationstakeO(lgn)time:Minimum(),Maximum()Successor(),Predecessor()Search()Insert()andDelete():WillalsotakeO(lgn)timeButwillneedspecialcaresincetheymodifytreeRed-BlackTrees:AnExampleColorthistree:7591212597Red-blackproperties:1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackInsert8Wheredoesitgo?Red-BlackTrees:
TheProblemWithInsertion125971. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackInsert8Wheredoesitgo?Whatcolor
shoulditbe?Red-BlackTrees:
TheProblemWithInsertion1259781. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackInsert8Wheredoesitgo?Whatcolor
shoulditbe?Red-BlackTrees:
TheProblemWithInsertion1259781. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackRed-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack125978Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?Can’tbered!(#3)1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?Can’tbered!(#3)Can’tbeblack!(#4)1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?Solution:
recolorthetree1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert10Wheredoesitgo?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert10Wheredoesitgo?Whatcolor?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack1259781110Red-BlackTrees:
TheProblemWithInsertionInsert10Wheredoesitgo?Whatcolor?A:nocolor!Tree
istooimbalancedMustchangetreestructure
toallowrecoloringGoal:restructuretreein
O(lgn)time1259781110RBTrees:RotationOurbasicoperationforchangingtreestructureiscalledrotation:Doesrotationpreserveinorderkeyordering?WhatwouldthecodeforrightRotate()actuallydo?yxCABxAyBCrightRotate(y)leftRotate(x)rightRotate(y)RBTrees:RotationAnswer:Alotofpointermanipulationxkeepsitsleftchildykeepsitsrightchildx’srightchildesy’sleftchildx’sandy’sparentschangeWhatistherunningtime?yxCABxAyBCRotationExampleRotateleftabout9:12597811RotationExampleRotateleftabout9:51279118Red-BlackTrees:InsertionInsertion:thebasicideaInsertxintotree,colorxredOnlyr-bproperty3mightbeviolated(ifp[x]red)Ifso,moveviolationuptreeuntilaplaceisfoundwhereitcanbefixedTotaltimewillbeO(lgn)rbInsert(x)treeInsert(x);x->color=RED;//Moveviolationof#3uptree,maintaining#4asinvariant:while(x!=root&&x->p->color==RED)if(x->p==x->p->p->left)y=x->p->p->right;if(y->color==RED)x->p->color=BLACK;y->color=BLACK;x->p->p->color=RED;x=x->p->p;else//y->color==BLACKif(x==x->p->right)x=x->p;leftRotate(x);x->p->color=BLACK;x->p->p->color=RED;rightRotate(x->p->p);else//x->p==x->p->p->right(sameasabove,butwith“right”&“left”exchanged)Case1Case2Case3rbInsert(x)treeInsert(x);x->color=RED;//Moveviolationof#3uptree,maintaining#4asinvariant:while(x!=root&&x->p->color==RED)if(x->p==x->p->p->left)y=x->p->p->right;if(y->color==RED)x->p->color=BLACK;y->color=BLACK;x->p->p->color=RED;x=x->p->p;else//y->color==BLACKif(x==x->p->right)x=x->p;leftRotate(x);x->p->color=BLACK;x->p->p->color=RED;rightRotate(x->p->p);else//x->p==x->p->p->right(sameasabove,butwith“right”&“left”exchanged)Case1:uncleisREDCase2Case3RBInsert:Case1if(y->color==RED)x->p->color=BLACK;y->color=BLACK;x->p->p->color=RED;x=x->p->p;Case1:“uncle”isredInfiguresbelow,all’sareequal-black-heightsubtreesCADBCADBxynewxChangecolorsofsomenodes,preserving#4:alldownwardpathshaveequalb.h.Thewhileloopnowco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传统节日童谣中的情感表达与小学情感教育渗透研究课题报告教学研究课题报告
- 2024年浙江财经大学马克思主义基本原理概论期末考试真题汇编
- 教师研修学习投入度与教师专业发展路径的关联性分析教学研究课题报告
- 2025年西藏职业技术学院马克思主义基本原理概论期末考试真题汇编
- 2025年六盘水职业技术学院马克思主义基本原理概论期末考试模拟试卷
- 2025年忻州职业技术学院马克思主义基本原理概论期末考试真题汇编
- 2025年西安铁路工程职工大学马克思主义基本原理概论期末考试笔试真题汇编
- 2024年衡水健康科技职业学院马克思主义基本原理概论期末考试真题汇编
- 2025年平顶山文化艺术职业学院马克思主义基本原理概论期末考试笔试题库
- 2024年南京艺术学院马克思主义基本原理概论期末考试笔试真题汇编
- 土方回填工程质量控制施工方案
- 渤海银行公司业务部客户经理岗位技能竞赛题库含答案
- 2025年海洋平台维护五年优化报告
- 聚合码商户协议书
- 珠海高新区2025年下半年公开招聘公办中学事业编制教师备考题库及答案详解一套
- 2025年贵港市利恒投资集团有限公司公开招聘工作人员的备考题库及参考答案详解
- 辽宁省沈阳市皇姑区2024-2025学年七年级上学期期末道德与法治试卷
- 辽宁省盘锦市兴隆台区2024-2025学年九年级上学期期末数学试题
- 2026年企业所得税汇算清缴流程与申报技巧手册
- 2026年江西交通职业技术学院单招职业技能考试题库完美版
- 2026年教师资格之中学综合素质考试题库500道含完整答案【夺冠】
评论
0/150
提交评论