版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
投资策略研究高能源成本+气候周期与碳中和目标激励=持续性节能增效需求2021年以来,供给侧多重因素驱动全球主要能源价格快速上涨,至今仍处于2010年以来的绝对高位,呈现中枢抬升的特征。2021年以来,欧美极端天气将新能源出力不稳的缺陷暴露无遗,对传统能源的需求快速提升。而传统能源企业则受此前疫情冲击需求以及全球碳中和推进的影响大幅削减资本开支,产能收缩明显,传统能源的供需缺口快速走扩,年末的寒冬进一步推升了用能需求。进入2022年,俄乌冲突爆发,欧美对俄(主要产能国)的制裁升级则加剧了供给的收紧。全球石油、天然气以及煤炭价格由此呈现2021年初、2021年末以及2022年一季度末至今的三段式上涨。尽管6月下旬以来,欧美衰退预期的升温使得能源价格出现筑顶回落迹象,但至今价格中枢的抬升依然明显。分项来看,原油方面,2021年初至8月29日,WTI原油及布伦特原油分别上涨103.7%及105.7%。天然气方面,2021年初至8月29日,NYMEX天然气上涨261%,至8月15日受俄罗斯供应收紧影响严重的欧洲TTF天然气前向一个月合约价格涨幅达到惊人的1074.7%。原油、天然气价格的上涨推升了作为替代能源的煤炭的需求,IPE理查德湾煤炭期货(对应欧洲需求为主)价格在2021年初至8月19日的区间涨幅达288.86%。能源价格的暴涨传导至发电端导致欧美的居民及工业电价同样快速上行,同比增速为2008年以来的最高水平。另一方面,衰退风险的加剧很大程度上也是能源供给短缺的结果。衰退预期的快速升温与风险的加剧源于今年1季度美联储率先开启加息周期并采取了较为激进的加息节奏(使得年内预期加息300bp以上,历史少见),7月欧央行亦选择追随美联储的步伐。发达国家央行之所以采取激进加息的手段目的便在于遏制处于历史高位的通胀,衰退预期与CPI同环比呈现极强的正相关性。而拆解欧美CPI便可发现,通胀居高不下的最大推手便是能源价格。美国方面,2021年下半年以来,能源价格对于不断走高的CPI的贡献均在25%以上,欧洲方面则更为明显,1Q21以来,能源价格飙升是HICP同比上行最主要的推力,其他分项的贡献则稳健的多。综上,便形成了能源价格飙升—>通胀几乎失控—>加息周期开启—>衰退预期升温风险加剧的传导链条。当期能源成本的高企将成为生产端及消费端节能需求提升、相关投资增加的催化剂,前瞻来看,当前进行节能资本开支性价比较优。异常天气与紧供给支撑全球能源价格并对中国产生外溢影响若衰退发生或许不会引发能源价格在短期大幅回落,有两大支撑力。第一,如前所述,本轮衰退之于欧美的最大风险点是供给侧的能源价格上涨,而非需求的大幅收缩。疫情以来,欧美居民部门的收入水平提升而非下降,资产负债表扩张而非收缩。根据华泰宏观团队2022.8.9发布的研报推演海外衰退风险及其宏观影响中对美国经济数据的预测,本轮衰退如果发生,比08年可能幅度较浅,但低迷时间更长。第二,北半球高温天气加剧,热浪频繁出现,欧美及国内多地气温创历史新高,使得夏季用能需求较往年进一步提升,传统能源调峰、消纳作用凸显,使得天然气等能源价格高位震荡。前瞻来看,高温过后将进入冬季能源补库阶段,对能源价格形成支撑。分项来看,传统能源供给偏紧的局面短期难以改变,同样意味着能源价格的高位震荡有支撑。高企的能源价格意味着当前生产端及消费端节能投资的投资回收期均将被大幅压缩,强化节能需求。原油供需关系的相对强弱主导油价,需求大幅收缩或打击大幅增加均可能使得油价暴跌。从2008年以来的油价复盘来看,若需求坍塌则油价大概率回落,典型的便是2008-2009年的深度衰退期间,布油期货一度由2008年6月末的139.8美元/桶回落至2008年末的45.6美元/桶。若供给大幅增加则油价亦有回落风险,典型的便是2014年起,OPEC为与美国页岩油争夺定价权而大幅增产,导致布油期货由2014年6月末的112.4美元/桶暴跌至2015年末的37.3美元/桶。而2011年,2013年及2019年的阶段性需求收缩期间,由于供给侧同样收紧,甚至幅度更大,原油价格呈现高位震荡或回升的走势。本轮供给偏紧而需求大幅收缩的概率较低意味着油价中枢的抬升有支撑。分供给来源看,美国页岩油近期产量及库存近期均有所回升,但距疫情前水平仍有差距。油价高位期间,美国页岩油企业的偿债意愿强于资本开支意愿,通胀削减法案的出台可能进一步压制未来的资本开支,而完工钻井数环比增速斜率放缓以及DUC数量的下滑意味着产能约束下,美国页岩油短期难以大幅增供。OPEC+方面,8月初的OPEC+会议同意9月仅微幅增产10万桶/天,为历史最低增产幅度,扩产意愿不强。历史视角,疫情后OPEC产量与油价呈现较强正相关,相机选择的意味明显。前瞻视角,需求走弱预期下,EIA预测OPEC原油剩余产能将小幅上行,产量方面,至2023年末将维持震荡。俄罗斯方面,欧洲能源去俄化的态度并没有转变,产量向有效供给的转化受限。天然气俄乌冲突下俄罗斯的供给强度仍是最大变量,对欧洲影响最大,若俄罗斯保持现有供给水平,欧洲也需要需求的削减来实现供需平衡,对于全球供需亦有外溢影响。根据IMF相关研究,假设欧洲能够通过俄方及非俄(主要是美国LNG进口)在夏天结束前实现80%的储气量,按照2021年的供需关系,工业部门及居民部门需要分别削减4bcm(5%)及13bcm(15%)的用量以避免天然气的供给短缺。而一旦俄方断供,那么在冬季(11月初至3月)需求高峰将出现36bcm(3600万立方米)的供给短缺,不同国家需要削减的需求幅度有差异,德国、奥地利以及意大利需要削减的幅度最大。如果出现2021年般的严冬则将意味欧洲各国需要额外再削减总计30bcm的天然气需求。其他市场方面,俄方供给收紧导致欧洲进口需求增加叠加本国持续高温进一步推升需求,美国天然气储气库的注气量仅有180亿立方英尺左右,处于较低水平。欧洲方面,除了高温天气外,碳价的上涨亦对天然气价格有一定传导。亚洲市场方面,主要消费国的冬季备货仍在进行(主要为东北亚),日本则有部分企业收到俄方更换“萨哈林-2号”运营商的通知,对日本供应保障的担忧边际加剧。国内方面,持续高温进一步提升了天然气作为替代能源的需求,叠加部分液厂检修仍在进行,海外供需偏紧推升进口成本,国内LNG价格上行。电力“碳中和”的积极推进正在逐步改变欧美及中国为代表的各国发电系统结构,旺季强需求下风光发电不稳定的弊端暴露,传统能源价格的上涨将快速传导至电价。全球来看,2018-2020年以来,可再生能源发电量增速大于电力需求增速,对传统能源发电形成挤出,在欧美尤其是力求降低能源对外依存度的欧洲尤为显著。2021年下半年以来全球范围内传统能源价格上涨导致的批发电价上涨在2022年持续,其中欧洲的电力涨价尤为明显,美国2Q22平均批发电价的同比涨幅达到130%。夏季以来极端天气带来的用能需求激增进一步暴露了风光发电在时间上的间歇性以及空间上资源与负荷错配两大结症。对新能源依赖度较高的欧洲不得不重启煤电等传统能源(莱茵河干涸导致的运输不畅削弱替代作用),其对电价的传导也更为通畅,从期货价格看,IEA预测,欧洲能源将在2022/2023年冬季冲顶。国内方面,石油天然气对外依存度高,此外用电高峰进行时,下半年电价有支撑。石油与天然气方面,中国对外依存度较高,前者在70%以上,后者亦超40%,全球“涨价潮”
下,中国不免受到牵连。电力方面,与欧洲类似,中国同样积极建设新型电力系统,降低能源对外依存度,副作用是电力供给的稳定性下降。尽管煤炭保供力度加大,但近期持续高温增加用电需求,干旱导致水电出力减少的背景下,部分地区再次出现“限电”,映射电力供需偏紧格局。前瞻来看,根据预测,2022年下半年全社会用电量增速约为7%,全年增速约为5.5%,全年电力供需呈现紧平衡。从季节性特征来看,下半年的电力供需缺口整体大于上半年,8月、9月以及12月的压力最大,意味着国内电价易上难下。综上,虽然衰退风险边际加剧,但本轮衰退的结症在于能源供给的收紧,欧美依然强劲的居民资产负债表意味着全球总需求的收缩可能不及2008年的深度衰退,短期来看,需求侧,夏季高温以及冬季补库带来的能源需求能够支撑能源价格中枢的抬升。供给侧,原油方面美国、OPEC、俄罗斯等产油国不具备大幅扩产的能力与意愿。天然气方面,俄罗斯供给已有削减,未来不确定性仍然较强,欧洲寻求替代供给者(美国LNG)及替代能源
(煤炭)对全球产生外溢影响,全球范围内石油、天然气及煤炭等传统能源价格或仍将高位运行,并传导至电价,使其2021年下半年来的上行趋势延续。能源价格高企的结果是,一方面,生产端及消费端的用能成本快速走高,使得两端用户出于降本,自发的产生节能增效相关的投资需求,原因在于能源价格中枢的抬升使得节能增效投资的投资回收期被缩短,过往节能投资面临的经济性约束边际“松绑”。另一方面,政府部门为遏制不断走高的能源价格,保障能源安全,或采用政策约束的方式压低用能需求,被动催生节能增效投资。典型的代表是欧盟委员会8月5日通过一项决议,2022年8月1日至2023年3月31日期间,将天然气需求量在过去5年平均消费量的基础上削减15%,潜在的措施包括鼓励工业燃料转换,有针对性地减少供热供冷服务等。碳中和目标的推进与气候周期的影响推升当期节能投资的性价比尽管短期能源价格的高企缩短了生产端以及消费端的节能投资的回收期,但多数节能投资的回收期仍在1年以上,部分生产端的节能增效技术回收期长达5年以上。而进一步思考,当前进行节能增效投资在中长期看也具有性价比,至少有两层推力。第一,中长期看“碳中和”仍然是全球共同的目标,按照IEA的2050NZE路径设计,当前至2030年,节能增效是实现这一目标最主要的路径之一,而节能环保指数的估值对碳中和政策最为敏感。当前已宣布的气候承诺方案(APS)特别是在2030年之前的关键时期,远未达到实现2050年净零排放(NZE)所需的减排量,存在12Gt二氧化碳当量的差距,而节能增效约能填补其中2.6Gt(占比超20%),仅次于电力脱碳(填补5Gt),高于终端电气化、氢能以及CCUS(合计填补2Gt)。能效提升本身也是节能的重要路径,而过去5年能源强度年均提升仅1.3%,远低于NZE设计的2020-2030年4%的目标,未来节能增效需加倍提速,国内亦定调“节能是第一能源”。从政策发布前后1日,“碳中和”
各赛道的估值变化幅度看,节能赛道正反馈效应强于电力脱碳,意味着市场定价不充分。第二,全球气候变暖的正在加速,而这将导致极端高温和严寒出现频率提升,相较“碳中和”目标而言,气候周期对节能增效的激励作用可能更为刚性。根据WMO的最新预测,2022-2026年的平均气温将高于2017-2021年的均值的概率高达93%,2022-2026年其中1年为史上最热的可能性亦为93%,其中1年的平均气温较工业化前高1.5摄氏度的概率为50%。全球气温升高加速正在成为中长期趋势,而即便2030年实现NZE,全球气温升高1.5度的概率亦有50%。IPCC研究表明,全球气温升高的后果之一是更为频繁的极端天气,带来更频繁更严重的能源供需的阶段性缺口,使得政府部门采取限电停产等管控措施。若限电停产季节性频发,对于生产端而言,高耗能产业链企业营收及市场份额的冲击成本高于当期节能增效投资。以欧洲为例,能源危机导致化工等高耗能行业被迫停产,下游企业增加进口推高生产成本而上游企业则被迫让出部分市场份额,产生中长期的负面影响,对于消费端而言,电力消费上限受约束,用电成本被推高。中长期看,当前进行节能投资对两端而言均是有效的风险对冲方式。赛道:生产端工业节能,消费端建筑与交通节能,电源端数字化前文的推演表明节能增效是生产端以及消费端长短逻辑兼备的资本开支方向,短期催化在于当期能源成本中枢的抬升,中长期性价比则体现在适应“碳中和”目标的推进以及气候周期的演进。本部分试图回答的是哪些节能增效赛道最值得关注。继续以性价比为锚思考,我们认为终端部门中的当期耗能大户是兼具节能增效充分性与必要性的优质赛道,此外辐射范围更广的能源数字一体化也是高性价比的赛道。根据IEA统计,终端部门中,2020年,全球范围内生产端的工业部门、消费端的建筑及交通部门是绝对的耗能大户,三者合计占全球能耗总量的95%左右,这一规律同样适用于主要经济体,意味着上述三大部门节能增效的空间最大,性价比亦最高,是节能增效的主力。此外,在
新能源装机规模不断提升的背景下,数字一体化也将成为电力系统自身节能增效的关键。具体细分赛道上考虑,工业部门节能增效涉及诸多行业。路径上,可分为两个维度,技术增效以及硬件优化(设备改造、用材升级),我们重点梳理钢铁、有色、机械、电新、水泥等能耗占比偏高同时技术迭代密度更高或技术成熟度更高的行业。对于延展性最强,可能横跨多个行业的技改及设备升级(余热余压利用、陶瓷纤维、高效节能电机),我们单独进行梳理。建筑部门节能增效主要可分为外层升级(装配式建筑、被动建筑、节能玻璃)与设备升级(供热系统、家电)两个方向。交运部门节能则主要为技术升级,包括公路建设以及轨道交通永磁牵引。能源数字化一体化则主要涵盖发电及能源管理下的细分赛道
(智能电网、高效节能变压器、储能及储能温控、虚拟电厂)。工业节能钢铁节能钢铁行业是中国的能源消费大户以及碳排放大户,节能增效空间大,主要路径为高炉长流程转电炉短流程冶钢。根据中国能源网统计,2020年钢铁行业的能源消费总量占全国能源消费总量的10%以上,二氧化碳排放占比同样偏高。电炉炼钢的节能增效效果显著,根据世界钢铁协会,电炉短流程总能耗仅为主流技术高炉长流程总能耗的50%左右
(2104Kwh/吨钢vs5122Kwh/吨钢)。而至2020年,中国电炉短流程的渗透率仅为10%左右,横向对比,远低于其他发达国家。底线思维下,关于促进钢铁工业高质量发展的指导意见指出,到2025年,中国电炉钢产量占粗钢总产量比例提升至15%以上。从中国以及欧洲的经验看,制约电炉炼钢的因素包括:1)废钢资源相对稀缺;2)产成品的质量或有一定损耗;3)对比转炉炼钢,废钢采购成本高于铁水。根据中国废钢铁应用协会预测,到2025年,中国废钢资源供给量或达3.4亿吨,废钢资源的逐步积累、采购成本的下降或将降低电炉炼钢短流程推广的阻力,而当前仍处于政策驱动阶段。有色节能再生技术是中国有色行业节能增效,实现“双碳计划”的主要路径之一,当前成效明显,提升空间仍大。再生技术的节能效应突出,以再生铝为例,根据中国有色金属协会和再生金属分会统计,生产再生铝的能耗仅为原铝的3.8%左右,成本较原铝低10000元/吨。与生产等量的原生金属相比,“十三五”期间中国再生有色金属产业至少节约原矿超过12亿吨、节约能源1.44亿吨标煤、节约用水96亿立方米、减少固体废物排放81.5亿吨、减少二氧化硫排放250万吨。前瞻来看,根据再生金属行业协会测算,当前,有色金属报废高峰期已至,国内再生铜铝原料的资源保有量分别约1.4亿吨和3亿吨,预计2025年再生有色金属产量将达2000万吨,2021-2025年的产量CAGR为6.64%,其中再生铝空间最大,CAGR超10%。前瞻来看,再生铝供需两侧均有望迎来改善。横向比较,2020年,美国再生铜、再生铝占铜、铝产量的比例分别超过了50%和70%,美国的铅、日本的铝已经实现100%由再生金属原料供给,而中国再生金属的合计渗透率仅25%。制约中国再生铝产业发展的因素包括:1)国内废铝供应不足,进口依赖度高;2)再生铝在强度、硬度、韧性等性能方面不及原生铝,应用场景受限。而随着:1)供给侧,废铝“国产替代”红利,根据SMM预测,2028年国内再生铝所需废铝中回收旧料的比重有望从2018年的45%提升至80%;
2)需求侧,汽车轻量化对压铸铝的需求提升,再生铝渗透的堵点有望被打通。机械节能汽车轻量化转型相关的一体化压铸以及超高强钢热成型或是节能增效的重点着力点。工业领域碳达峰实施方案明确提出到2025年,机械行业中先进净成型工艺能够实现产业化应用。从重点技术路径的应用领域以及该领域自身的节能目标考虑,汽车轻量化相关技术或为机械技能减排的重点方向之一。节能与新能源汽车技术路线2.0中明确提出到2025年,乘用车新车的平均油耗需要达到4.6L/100km。根据国际铝业协会测算,对于燃油车,汽车质量每降低100kg,每百公里可节省约0.6L燃油,减排800-900g的二氧化碳;
对于电动车,纯电动汽车整车重量若降低10kg,续驶里程则可增加2.5km,轻量化的节能增效效应突出。重点技术分别来看:一体化压铸一体化压铸及轻质合金材料能够有效推动汽车轻量化转型。增效显著。政策目标上,节能与新能源汽车技术路线图2.0中要求2035年燃油乘用车/纯电动乘用车轻量化系数分别下降25%/35%。具体材料方面,根据节能与新能源技术路线图规划,2025年铝合金单车用量将达到250kg,而2020年用量约为139kg/辆,5年车均用量接近翻倍。一体化压铸技术大幅提升单车用铝量达成减重效果,一体化压铸下的铝合金车身重量约为200-250kg,而同级别传统钢铝混合车身的重量在280kg左右,减重效果显著;同时一体化压铸工艺用时约为传统压铸工艺的1/17,单位时间生产量有大幅提升,增效显著。超高强钢热成形超高强钢热成形替代主流低碳钢可以减重25%。目前汽车中钢材占自重比例达55%-60%,是最主要的车身材料,其中热成形工艺加工而成的超高强度合金钢占车身比重达到10%以上。普通钢材张力较低,因此需要多层覆盖提高强度,而热成型超高强钢较高的张力可以实现单层覆盖而达到相同的强度,预计性能不变的情况下,使用热成型超高强钢单车可减重15kg-20kg。节能与新能源汽车技术路线图2.0中规划至2025年,1.8GPa热成型钢批量应用,2030年2.0GPa热成型钢批量应用,同时近终形高强钢全面替代800MPa以下的冷轧产品,产品替代将为超高强钢热成形技术带来一定的业绩空间。电新节能动力电池加速推广,理论回收量大幅提升,梯级利用节能增效。新能源车动力电池性能衰减至80%下时,就无法满足新能源车使用场景。当剩余容量处于20%-80%时,动力电池可通过梯级能量回收,应用于储能等场景;当剩余容量处于20%以下,动力电池可通过拆解回收,镍、钴、锰等金属元素可实现95%以上的回收率。随着后续政策推动下电池标准统一,中国动力电池市场规模有望加速发展。2022年8月1日,工业领域碳达峰实施方案明确“推动新能源汽车动力电池回收利用体系建设”,随着体系的建设和完善,回收速度将加快进行。根据中国废旧锂离子电池回收拆解与梯次利用行业发展白皮书(2022年)预测,2022年中国废旧锂电池理论回收量达76.2万吨,2021-2025年CAGR达33%。成本偏高、监管力度弱是限制动力电池回收产业发展的主要因素。以磷酸铁锂电池为例,一吨磷酸铁锂电池回收在8500元,但市场价值仅为8000元,回收企业仍处于亏损阶段;
贵金属提取过程中具有污染治理、最低提取率等要求,进一步提升回收成本。监管力度偏弱又导致具备成本优势的回收白名单外的企业侵蚀市场份额。若成本及监管端能够取得突破,将真正打开动力电池回收的蓝海。水泥节能水泥窑协同处置是水泥节能的有效途径。中国水泥熟料节能减排已有一定成效,能耗由2015年的112千克标准煤/吨下降到2020年的108千克标准煤/吨,但节能减排压力依旧较大,为水泥企业转型的重要方向,以替代衍生燃料(RDF)技术为主流,通过对化石燃料的热值替代实现节能减碳。以华新水泥
RDF技术为例,目前5000吨的熟料窑能日处理900吨RDF,1吨RDF含有相当300kg原煤的热值,华新协同处置热替代率最高可达到50%。水泥窑协同处置的经济性近年来亦明显提升,在第三方处置市场渗透较快。目前新建或改扩建传统危废焚烧炉设施的平均投资一般为3000-16000元/吨处置产能,而水泥窑协同处置危废投资额只需1000元左右/吨处置产能,且运营成本约为焚烧处理的50%。2020年,水泥窑协同处置量占全国危废第三方处置(传统焚烧、水泥窑协同、填埋、其它)总量约21%。根据中国水泥网&水泥大数据研究院郑建辉预测,“十四五”水泥窑协同处置危废能力有望突破1500万吨,市占率提升至33%以上。广义工业节能余热余压利用余热余压利用可通过改进工艺结构和增加节能装置来最大幅度的利用高耗能行业在生产过程中产生的势能和余热,技术成熟度、普适性低及初始投资成本高是主要制约因素。高耗能行业中余热资源约占其燃料消耗总量的17%-67%,其中可回收余热资源比例约60%。但目前中国余热回收利用仅占余热资源总量的30%,海外余热利用率可达40%-60%。细分行业上看,余热利用节能降碳效果优异,方大特钢焦化厂建设的干熄焦余热发电循环水系统日均电耗与之前相比可节约3610kWh。但以钢铁行业为例,中国钢铁余热余能的回收利用率仅为30%左右,而日本的新日铁可达92%以上。技术增效是余热余压快速渗透的关键。另一大堵点在于较高的初始投资成本,政策补贴或是现阶段最有效的解决方案。陶瓷纤维陶瓷纤维作为新型耐火材料能够显著降低冶炼热损耗以及窑炉的负荷,实现节能增效。陶瓷纤维比传统硬质耐火材料可节约20-40%的能耗。根据鲁阳节能招股书,冶炼过程中,陶瓷纤维散热损失仅为5337.5卡,比传统耐火材料低约18%。2019年,中国陶瓷纤维制品年产量约70万吨,渗透率仅为3%,处于全球整体水平以下。同时,陶瓷纤维下游应用领域广阔,对单一行业景气度的敏感性较低。不考虑下游应用领域的拓展,若未来陶瓷纤维产量占耐火材料比例达到5%、10%,增长市场空间约为50万吨、170万吨。结构性特征上考虑,中高端产品存在技术壁垒,且下游需求旺盛,利润率较高,随技术降本以及规模降本推进,渗透有望加速。高效节能电机政策驱动下,2025年新增高效节能电机占比有望提升至70%。2020年,中国电机耗电量约占全社会总用电量的64%。而目前中国电机系统运行效率低于国外先进水平20%。相比于普通电机,高效电机损耗可下降20%以上。永磁同步电机作为高效电机的代表品种,在轻载时的效率仍可达到95%,节能效果显著。2020年中国的节能电机占比约10%,远低于目前欧美发达国家的40%以上的水平。制约高效节能电机推广的主要因素为更高的初始投资成本(较传统电机高20%-30%)。“碳中和”背景下,政策叠加工业电价上涨驱动需求,电机产业向高效节能大方向加速升级。2020年5月,GB18613-2020电动机能效限定及能效等级规定IE3以下能效电机将被强制停产。2022年6月工业能效提升行动计划明确提出2025年新增高效节能电机占比达到70%以上,节能电机渗透空间较大。广义消费节能节能变频器——IGBT产业链。在零碳电力完全渗透前,通过技术手段降低设备运行对电力的消耗,也可达到节能降碳的效果。当前技术手段相对成熟的节能提效领域主要为新能源车、家电(变频家电)与工业(工业控制与自动化),三者的核心部件均对应功率半导体,尤其是具备低能耗属性的IGBT,新能源车+工控+家电领域合计占IGBT下游需求近80%。2013年以来三大白电的能效新标陆续出台,推动变频家电渗透率提升,以销量计算,2020Q3变频空调渗透率达到70%左右,变频冰洗渗透率达到50%左右,能效标准趋严的背景下,后续渗透率仍有可观的提升空间,增速高于白电行业整体;工控与自动化领域,根据前瞻产业研究院,2020至2025年,变频器市场规模CAGR有望达10%。建筑节能中国建筑能耗研究报告(2020年)提出,2018年中国建筑全过程能耗总量占全国能源消费总量的46.5%,占全国碳排放量的比重为51.3%,节能增效潜力巨大。装配式建筑装配式建筑节省10-20%能耗,是建筑节能的有效途径。2021年,根据住建部数据,装配式以混凝土构建为主,节能效果较优的装配式钢结构占比为28.8%,且目前中国装配式建筑渗透率仅为24.5%,作为对比,海外发达国家的渗透率在70%以上。住建部“十四五”
装配式建筑行动方案明确规定到2025年装配式建筑占新建建筑面积比例达到30%。在这一目标基础上,近日,住建部和发展改革委发布城乡建设领域碳达峰实施方案,明确提出到2030年装配式建筑占当年城镇新建建筑的比例达到40%。被动建筑被动建筑节能效果优异但目前渗透率较低。被动式建筑可实现超低能耗,建筑节能率可以高达80%—90%。以龙湖地产对应项目为例,被动式建筑每年能节约燃气约2.16立方米/平方米、节约电量约3.19千瓦时/平方米,同时相关能源系统和设备效率的提升约每平方米可节电78千瓦时。从竣工面积角度,根据中散协被动式装配建筑委员会统计,2013-2018年5年的总竣工面积为16万平方米,随着政策的支持度逐渐提升,从2020年开始,竣工项目开始呈指数型增长,保守估计到2035年全国将有20亿平方米的被动式低能耗建筑产业容量。建材性能要求高,主要依赖进口是主要制约。以密封条为例,国内中空玻璃的双面胶条、玻璃与型材之间的密封胶条等材料的性能达不到被动式建筑所规定的要求,其关键材料绝大部分依靠进口,建设成本较高。节能玻璃建筑玻璃门窗能耗占建筑总能耗的23%,是建筑节能的重点方向之一。建筑节能与可再生能源利用通用规范的发布或加速节能玻璃对现有双层玻璃的替代,节能玻璃拥有更加优越的隔热和遮阳性能,冬季可以大大减少室内热量的溢出,夏季以可以减少阳光进入室内。其中,低辐射镀膜玻璃(Low-E玻璃)是节能性能最好的窗用材料。Low-E中空玻璃节能效果比普通玻璃提高超过70%,比普通中空玻璃提高了40%以上。目前,国内LowE玻璃的渗透率仅12%,发达国家如德国渗透率则高于90%,渗透空间较大。供热系统“碳中和”背景下,欧洲加快能源转型推动热泵渗透率快速提升。空气源热泵具有优良的节能效益,每度电可产生3千瓦以上的热量,节能效益可达到75%。能源危机的发酵加速了欧洲降低能源对外依存度的进程,“RepowerEU”能源计划提出欧盟将在未来5年内安装1000万台热泵,部署速度提升1倍,推动全球热泵加速渗透。IEA统计,2020年,全球热泵在供热系统的渗透率仅为7%,而2030年渗透率需达到42%,安装量需从1.8亿台增加至2030年6亿台(至2025年达到2.8亿台),才可满足“碳中和”需求,CAGR为11.3%。欧洲能源危机为催化剂有望加速热泵出口。制约空气源热泵推广的主要因素为:1)初始购买和安装成本偏高,toC端吸引力不强;2)低温环境下运行稳定性不足。欧美能源困局下补贴政策的加码短期有效刺激了外需。中长期渗透率提升的关键仍在于技术创新以实现降本并提升出力稳定性。家电(光伏直驱空调以及LED)高效率家电是消费端居民节能的重要途径。根据IEA统计,家电是居民部门第二大耗能领域,占住宅总能耗的20%以上,其中2020年供冷系统占建筑部门最终用电量的近16%。而光伏直驱空调可有效降低供冷系统能耗。光伏直驱利用率高达98%,根据全球制冷技术创新大赛主委会测算,该技术可以降低85.7%的空调碳排放量。根据IEA统计,为实现2050年全球“碳中和”的目标,到2030年,全球市场新增空调机组的平均效率等级至少需要提高50%。LED灯节能效果远超普通灯泡。3W的LED节能灯333小时耗1度电,而普通60W白炽灯17小时耗1度电,普通5W节能灯200小时耗1度电。根据IEA预测,2025年家电LED照明将全面普及。交通节能公路建设节能沥青就地热再生技术及大比例掺量废旧沥青混合料再生技术是公路建设节能增效的有效手段。中国每年需要翻修、重建的旧沥青路面占15%以上,由此产生的废旧沥青混合料预计将超过2000万吨。就地热再生及大比例掺量废旧沥青混合料再生技术等废旧沥青再利用技术能够有效实现节能增效。就地热再生沥青路面比AC-13沥青路面节能38.70%,其能耗和温室气体排放量较传统铣刨重铺降低约37.1%和42.5%。而采用50%RAP掺量的厂拌热再生沥青混合料的单位能耗和碳排放相比新拌沥青混合料分别降低260.3MJ/t和4.61kg/t,节约能耗44.7%,降低碳排放10.7%。技术推广的主要约束在于质控不稳定且设备成本较高,同时不同再生方式各有千秋,适用场景不同。厂拌热再生技术的优势在于适用范围广,能用于各等级公路且施工质量较稳定,海外普及度高。其弊端在于1)旧料利用率仍偏低,约为10%-30%;2)对拌和设备要求较高且产生运输成本;3)对路基有一定损害,环保性较差。就地热再生技术的优势在于旧料利用率高,且运输等次生成本低。其弊端在于:1)对路面承载力要求较高,适用范围相对有限;2)施工质量控制难度较大,易产生不均匀性。因此,再生技术的选用需要考虑公路等级、路面状况、养护工程性质、交通量情况、施工环境等多个因素。技术提质降本是大面积推广关键。轨道交通节能永磁牵引系统相比于异步牵引车可节约30%-40%左右能耗。永磁牵引车节能主要通过减少牵引能耗及增加再生能量反馈两方面进行节能,总能耗低于异步牵引车43%。根据时代电气统计,地铁每列车每年用电量约为132万度,若列车采用永磁牵引系统,每列车每年可节约电量约40万度。而目前根据RT轨道交通网统计,2022年1-6月约有153列地铁完成牵引系统招标,但永磁牵引系统招标数量仅为3辆,占比约为2%。制约永磁牵引制约渗透的主要因素为较高的初始投资成本下经济性较差,仍待技术降本或政策驱动。以苏州地铁项目为例,每列车永磁牵引系统初始投资相比普通牵引系统多100万,而全生命周期年均节约电费约10万,投资回收期超10年,若无政策补贴驱动,自发投资意愿偏低。能源数字化智能电网建设智能电网是推动电力系统节能增效的举措。发电侧,智能电网显著提升对风光等新能源并网的运行控制能力,提升风光并网后的经济性、可靠性及高效性。输电侧,智能电网能够提升输电的安全性及稳定性,减少停电损失。配电侧,智能电网再资源配置方面优势显著,能够明显提升电网的利用率。用电侧,智能电网能够平衡用电负荷,降低负荷峰谷差,延长电网的生命周期。根据美国国家实验室测算,使用智
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师成长课程设计
- 论文的课程设计
- 教工管理系统课程设计
- 教室室分配系统课程设计
- 教学楼照明配电课程设计
- 教培机构 课程设计
- 教务管理系统 课程设计
- 论文优化课程设计
- 撒播花籽施工方案
- 搬运视频违规处理方案
- 小班美术《小刺猬背果果》课件
- 人教版数学三年级上册《1-4单元综合复习》试题
- 2024年水利工程行业技能考试-水利部质量检测员笔试历年真题荟萃含答案
- 空调水系统管道冷量、流量及管径计算方法和选取表
- 皮下气肿护理查房
- 西方经济学 课件 10 失业与通货膨胀理论
- 快速康复外科在泌尿外科患者围手术期护理中的应用进展
- 妇科护理宫颈炎盆腔炎的护理
- (新版)三级物联网安装调试员技能鉴定考试题库大全-上(单选题汇总)
- 快消行业品牌分析
- 第6课《求助电话》课件
评论
0/150
提交评论