版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省宜宾市第二中学校高二上学期期中考试数学(文)试题考试时间:120分钟满分:150分第=1\*ROMANI卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式的解集是A.B.C.D.2.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.执行如图所示的程序框图,若输入t的取值范围为,则输出s的取值范围为A. B. C. D.4.点关于直线的对称点的坐标为A. B. C. D.5.若点在圆的外部,则实数的取值范围是A. B. C. D.6.在正方体中,P为的中点,则直线与所成的角为A. B. C. D.7.已知,,且,则的最小值为A.8 B. C.9 D.8.直线被圆所截得的弦长为A. B.4 C. D.9.已知命题关于的方程没有实根;命题,.若和都是假命题,则实数的取值范围是A. B.C. D.10.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是A. B.或 C. D.11.已知A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为A. B. C. D.12.已知点在直线上的运动,则的最小值是A. B. C. D.第=2\*ROMANII卷非选择题(90分)二、填空题(5分每题,共20分)13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件.14.若直线:与直线:平行,则直线与之间的距离为______.15.已知实数满足,则目标函数的最大值为______.16.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答17.(10分)已知点,直线,直线.(1)求点A关于直线的对称点B的坐标;(2)求直线关于直线的对称直线方程.18.(12分)已知圆C:.(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值.19.(12分)已知焦点在x轴上的双曲线C的离心率为,且过点.(1)求双曲线C的标准方程;(2)若直线与双曲线C交于A,B两点,求弦长.20.(12分)如图,三棱锥中,平面.(1)求证:平面;(2)若,为中点,求三棱锥的体积.21.(12分)已知抛物线的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.22.(12分)已知椭圆:的左、右焦点分别为,离心率,为椭圆上的任意一点(不含长轴端点),且面积的最大值为1.(1)求椭圆的方程;(2)已知直线与椭圆交于不同的两点,且线段的中点不在圆内,求的取值范围.叙州区二中2022-2023学年高二上期中考试文科数学参考答案:1.C2.A3.A4.A5.C6.D7.C8.A9.D10.B11.A12.A13.14.15.-416.17.(1)设点,则由题意可得,解得,所以点B的坐标为,(2)由,得,所以两直线交于点,在直线上取一点,设其关于直线的对称点为,则,解得,即,所以,所以直线为,即,所以直线关于直线的对称直线方程为18.(1)圆C:化为标准方程为:,所以圆心为,半径为r=4.(1)当斜率不存在时,x=1代入圆方程得,弦长为,不满足条件;(2)当斜率存在时,设即.圆心C到直线l的距离,解得:或k=0,所以直线方程为或.(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,则.因为,所以所以.所以当时,最小,四边形PACB面积取得最小值.所以,所以,即四边形PACB面积的最小值为8.19.(1)由离心率为,所以,所以双曲线渐近线方程为,设双曲线方程为:,代入点的坐标可得,所以双曲线方程为:;(2)变形可得,联立和方程可得:,所以,,所以两点坐标分别为,所以.20.(1)∵平面BCD,平面BCD,∴.又∵,,平面ABD,平面ABD,∴平面.(2)由平面BCD,得.∵,∴.∵M是AD的中点,∴.由(1)知,平面ABD,∴三棱锥C-ABM的高,因此三棱锥的体积.解法二:(1)同解法一.(2)由平面BCD知,平面ABD平面BCD,又平面ABD平面BCD=BD,如图,过点M作交BD于点N.则平面BCD,且,又,∴.∴三棱锥的体积.21.(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)[方法一]:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,据此整理可得点的轨迹方程为,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线的斜率的最大值为.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为.设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为.[方法三]:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为.设直线的斜率为k,则.令,则的对称轴为,所以.故直线斜率的最大值为.[方法四]:参数+基本不等式法由题可设.因为,所以.于是,所以则直线的斜率为.当且仅当,即时等号成立,所以直线斜率的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省徐州市邳州市2024-2025学年三年级上学期11月期中英语试题
- 2024-2025学年福建省三明市五县联考高二(上)期中物理试卷(含答案)
- 医用隔离衣产业规划专项研究报告
- 尿布桶产业深度调研及未来发展现状趋势
- 拖鞋袜市场发展预测和趋势分析
- 人教版英语八年级下册 暑假综合复习
- 便携秤产业规划专项研究报告
- 交通枢纽消防安全维护方案
- 园艺景观项目施工方案
- 酒店客房翻新工程方案
- 安全隐患排查检讨反思
- Advanced Operations Research智慧树知到答案2024年上海大学
- 2024年《突发事件应对法》知识考试题库(含答案)
- 音乐鉴赏(西安交通大学)智慧树知到期末考试答案2024年
- 主题班会-期中考试动员
- MOOC 数据挖掘与python实践-中央财经大学 中国大学慕课答案
- 夸美纽斯完整版本
- 社会主义发展史智慧树知到期末考试答案2024年
- 医院管理案例分享:住院患者人工气道同质化管理持续改进
- 项目设计招标实施工作方案
- 2024年护坡施工合同范本
评论
0/150
提交评论